

Short-term solar power forecasting using

different Machine Learning models

Diego Rueda Uribe

Department of Mechanical Engineering

Universidad de los Andes

Bogotá, Colombia

d.rueda@uniandes.edu.co

June 2020

Advisor: Andrés Leonardo González Mancera, PhD.

Presented to obtain the degree of:

BSc. Mechanical Engineer

mailto:d.rueda@uniandes.edu.co

Abstract – Photovoltaic power production forecasting has become increasingly relevant over the

past decade. In this study, training and evaluation of different Machine Learning models is

performed in order to generate short-term predictions based on current power production and

weather variables including temperature, relative humidity, wind speed and direction, cloud

cover, and direct radiation. Three different datasets were used to train each model, from three

different geographic locations in the world.

I. Introduction

Over the past decade, the world has seen a considerable increase in the use of renewable energy due

to ever declining costs and as part of a global effort to reduce greenhouse gas emissions. The share of

renewable energy in total global energy production has risen from 0.7% in 2010 to 2% in 2017.

Photovoltaic (PV) installed capacity has grown from 21 GW in 2009 to 505 GW in 2018, nearly a 23-

fold increase in just nine years. This trend has occurred mainly because the levelized cost of energy

(LCOE) of a PV installation has rapidly declined over the years. Globally, the average LCOE for PV

systems has declined 77% between 2010 and 2018 [1]. As costs decline and new projects are being

made, industrial and academic interest on PV energy has risen accordingly.

However, PV energy production is unpredictable because it depends on the amount of solar

irradiance on the panels, amongst other uncontrollable factors such as temperature, wind speed,

relative humidity, among others, further analyzed in this work. The inherent unpredictability

associated to PV energy production has raised the industry’s interest to further develop accurate

forecasting methods. Forecasting PV power is relevant because grid operators must be able to

accurately know electric energy production and try to match it with electricity demand. As

renewables take on a larger share of the electricity production, matching supply with demand has

been an increasingly challenging and relevant task [2].

Solar power forecasting for PV system design has been traditionally based on physical models that

depend on irradiance measurements and the geographic position of PV modules relative to the sun's

movement [3]. However, different Machine Learning models have been recently introduced for PV

power forecasting mainly in two different ways: to predict global horizontal irradiance or to predict

PV power directly. Global horizontal irradiance predictions are then fed to a PV physical model that

considers system characteristics such as module nominal power, inclination, inverter efficiency,

among others. This approach does not necessarily require historic power data to work and is

commonly used to evaluate whether a particular site is adequate for a PV power plant or not. On the

other hand, forecasting PV power directly with Machine Learning depends on historic power data of

an existing PV installation. Both types of approaches rely heavily on weather data availability and

have proven to be increasingly accurate. For example, authors in [4] develop a framework to find an

optimal Machine Learning model that forecasts GHI for a particular measuring station in Abu Dhabi

International Airport, UAE. The study in Abu Dhabi finds that models based on a Bayesian

framework result in an average determination coefficient R2 of 0.969. An example of direct PV power

production found in [5] compares different Deep Learning and statistical models on ten different

datasets from PV installations in South Korea. Results show that Deep Learning models combining

Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (LSTM)

outperform other models. Also, the study made in South Korea demonstrates that including weather

data as an input for the models improves performance.

In this paper, different Machine Learning techniques are implemented to forecast 5 or 10 minute-

ahead PV power for three different systems, based on current power production and weather-

associated variables. The first step in this study was data preprocessing and handling (i.e. eliminating

null values, joining data from different sources, among others). Second, a Principal Component

Analysis (PCA) was performed on the data in order to extract the most relevant data features to train

the Machine Learning models. Third, different Machine Learning and Deep Learning models are

trained and tested. Finally, results are discussed, the best model is identified, and all models are

compared.

II. Data Handling

PV Systems

The three PV power installations analyzed in this project are located in Perth (Australia), Chapman

(Australia), and Bogotá (Colombia). System characteristics are shown in table I.

Table I. PV system characteristics.

Data sources:

Power data for the three selected locations was obtained from two different sources: the data for two

locations (Chapman and Perth) was downloaded from an online public database of thousands of

individual PV systems across three regions in Australia available in [6], while the third location's

power data was directly downloaded from an online platform built by meteocontrol GmbH for the

solar panels that are on the roof of the SD block (Bloque Julio Mario Santodomingo) at Universidad de

los Andes in Bogotá, Colombia.

The database from which power data was downloaded contains a file for each region in Australia

(Perth, Canberra and Adelaide) with a timeseries of 10-minute average solar power for thousands of

PV systems. These values are normalized, so they must be multiplied by each system’s installed

capacity to obtain the actual power value. Another file in the database contains general information

about each PV system such as ID, geographic position, installed capacity, among others. The two

locations from the first source of Australian PV systems were selected because they presented few

missing values and therefore they offer a more complete representation of a PV power plant with

normal, uninterrupted operation. Both locations seem to be residential units, according to satellite

imagery from Google Maps. For the scope of this project, it is not possible to physically verify these

systems. Data has a 10-minute temporal resolution and was filtered using quality control techniques

detailed in [6]. The data spans from September 23th, 2016 to November 30th, 2017.

Location Latitude Longitude

Elevation

above sea

level [m]

Installed

capacity

[kWp]

Module

reference
AC Inverter reference

Perth -31.929137 115.913199 30 3.04 N/A N/A

Chapman -35.355794 149.047986 645 10.26 N/A N/A

Bogotá 4.604303 -74.065887 2600 80.06

200 x LG

Electronics

LG400N2W-

A5

1 x PVS-50-TL

1 x TRIO-27.6-TL-OUTD

On the other hand, power data from the third location in Bogotá is directly measured and available

for analysis online for educational purposes within Universidad de los Andes. Data has a 5-minute

temporal resolution and is available between August 3rd, 2019 and May 9th, 2020. In this case, only

power readings were downloaded.

Figure 1. Satellite Image of PV System in Chapman, Australia obtained from Google Maps.

Figure 2. PV installation at SD Building. Bogotá, Colombia

Weather data was downloaded from meteoblue history+, which is a global weather simulation

archive that has hourly data for many weather variables since 1985. This organization supported this

research project by providing this data free of charge. The variables used for this project are:

Temperature (2 meters above ground), Relative Humidity (2 m), Cloud Cover, Shortwave Radiation,

Wind Speed (10 m), and Wind Direction (10 m).

Additionally, a Clear Sky model was used to obtain hourly global horizontal irradiance at the same

locations as the power data. These data points serve the purpose of aiding the models to ‘learn’

seasonality in training data, according to [7]. A Clear Sky model is a physical model used to estimate

irradiance based on a geometric representation of a location on earth and its position relative to the

sun. This model receives its name because a main assumption made is that there are no clouds in the

sky. There are some extensions to the basic, location-based Clear Sky model that include particle

turbidity in the air such as pollution or other aerosols. However, in this case, a basic location-based

Clear Sky model was implemented in Python using the popular photovoltaics library pvlib [8]. The

basic model was implemented because it serves the purpose of helping Machine Learning models to

learn seasonality. The output variable that is obtained with this model and used in this project is the

global horizontal irradiance (ghi), reported in W/m2.

Data description and manipulation

Input data, or features, were organized in a dataframe (a common data structure in many

programming languages) where null values were eliminated. Only data between the time range 7:00-

18:00 were considered, since most of the samples outside this time range are null or zero. The features

used for this project are:

Table II. Features

Feature name Units

Power 𝑊 𝑜𝑟 𝑘𝑊

Temperature º𝐶

Relative Humidity %

Cloud Cover %

Shortwave

Radiation

𝑊/𝑚2

Wind Speed 𝑘𝑚/ℎ

Wind Direction º

Clear Sky Global

Horizontal

Irradiance (ghi)

𝑊/𝑚2

The timestep for the dataframes in WA and ACT is 10 minutes, while the timestep for the dataframe

from Bogotá is 5 minutes. All hourly data was adjusted to these timesteps, but no interpolation was

made; hourly data repeats itself in each 10 or 5-minute timestep that corresponds to each hour. This

was done because it maintains the size of the power data’s timestep, so all forecasting performed in

this project is still considered short-term. If, on the contrary, power data is adjusted to the hourly

weather variables, the forecasts would have a 1-hour timestep, and that is undesirable for this study.

The output data are the power values for the next time step corresponding to each feature: 10 and 5

minute-ahead power production for Australian and Bogotá locations, respectively. Output data is

represented by 3d plots as shown in figure 3:

a) b)

c)

Figure 3. Power data representation in a) Perth, b) Chapman and c) Bogotá.

In order to obtain good results from the Machine Learning models shown in section IV, it is important

to ensure output data is balanced. In other words, it should be evenly distributed. This is relevant

because, when data is split into training/testing sets, there should be uniform amount of low and

high-power values in both sets to avoid biasing either training or testing sets with only high or low

values. For example, if a model is trained only with high-power data points, it will learn and

therefore only perform well on high-power testing data. The histograms in figure 4 show this

graphically, except for Bogotá, which seems to be distributed exponentially.

 a) b) c)

Figure 4. Power data histogram in a) Chapman, b) Perth and c) Bogotá.

III. Feature Selection

The next step in model building is reducing the dimensionality of the features. This reduction

improves Machine Learning model performance in general. This process, known as dimensionality

reduction, is a type of unsupervised learning because it does not depend on the output data, only the

correlation between the original input features [9].

One of the most widely used algorithms is called Principal Component Analysis (PCA) and consists

in rotating the datasets such that the correlation between features is minimized. After said rotation, a

linear combination of the original features into a lower dimensional set of new features is performed.

These new features are called principal components and since they are a linear combination of the

original features, the physical interpretation of each individual principal component is often difficult

to make. This dimensionality reduction has the goal of maintaining the explained variance of the

original dataset while reducing dimensions, which can be understood as eliminating some of the

original features. Usually, obtaining an explained variance above 85% from a PCA is acceptable.

After performing a PCA on all three datasets, the resulting explained variance can be observed in the

following figures, both component-wise and the cumulative variance using five principal

components.

a) b)

c)

Figure 5. PCA Explained variance in a) Perth, b) Chapman and c) Bogotá.

The linear combination of the original features resulting in each principal component is shown in the

following heat maps.

a) b) c)

Figure 6. PCA feature heatmap in a) Perth, b) Chapman, and c) Bogotá

PCA results for each location are summarized in table III:

Table III. Cumulative explained variance after performing PCA.

Location Total explained

variance

Perth 0.93489

Chapman 0.86156

Bogotá 0.92662

IV. Supervised Learning Models

Supervised Learning has been a widely implemented type of Machine Learning to solve regression

problems. The goal of a supervised learning regression model is to predict an output quantity based

on one or more inputs, commonly known as features. In order to build these models, it is necessary to

have a set of historical data, where the values of the input features are known as well as the values of

the output variable. With enough data samples, models can ‘learn’ how to make accurate predictions

based on input data of which the corresponding output is unknown. This learning stage in the

development of a model is usually referred to as ‘model training’ [8].

It is necessary to have a large amount of data samples because supervised learning models must be

trained with them in order to perform well when given unknown data samples and generate accurate

predictions. This training process is done in order to minimize the error associated with the

prediction the model does on training data samples, commonly known as ‘loss’. Once training is

done, the model must be tested on data samples that have not been used in training in order to

observe how well the model performs on new data. In this sense, datasets are normally split into

training and testing data.

In this case, all datasets were split randomly such that 80% of samples correspond to training data

and 20% to testing data. Because data is split randomly, an inevitable assumption made when

building the models for this project is that each data point is independent from previous samples and

predictions, given that randomization breaks the order of the time series.

Model performance is quantified with the coefficient of determination (𝑅2) in every case. As the value

for this performance metric approaches 1, model performance is better. When 𝑅2 = 1 there is a perfect

fit; an unrealistic situation. Commonly, a model with a determination coefficient above 0.8 is

considered a good fit.

In the following sub-sections, a brief description and main results are shown for each model built in

this project. A complete mathematical demonstration of these models is not shown in this paper since

that is not part of the scope of this project.

Kernelized Support Vector Regression (SVR)

A Support Vector Regression is a supervised learning algorithm based on Support Vector Machines

(SVM), one of the most popular Machine Learning algorithms used for classification purposes. A SVR

model is also very similar to a linear regression but includes a slack hyperparameter that allows for

errors between the model's predictions and the data to fall into an acceptable range [8].

This model is described by the linear equation that relates input data (x’) to output values (y) with a

parameter β and b.

 𝑦 = 𝛽𝑥′ + 𝑏 (1)

The goal of the model is to minimize 𝛽 while ensuring that all training samples deviate from the line

described by equation 1 by a value less than ε. However, since sometimes this optimization problem

is sometimes unfeasible, slack variables ξ and ξ* are introduced such that some points will be able to

fall outside the region defined by +/- ε [10]. This is shown clearly in figure 7.

Figure 7. SVR Model. Taken from (https://www.saedsayad.com/support_vector_machine_reg.htm)

Thus, the optimization model is expressed as:

min

1

2
𝛽 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

(2)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑦𝑛 − (𝛽𝑥𝑛
′ + 𝑏) ≤ 𝜖 + 𝜉𝑛 , ∀ 𝑛 ∈ 𝑁

(𝛽𝑥𝑛
′ + 𝑏) − 𝑦𝑛 ≤ 𝜖 + 𝜉𝑛

∗ , ∀ 𝑛 ∈ 𝑁
𝜉𝑛

∗ ≥ 0 ∀ 𝑛 ∈ 𝑁
𝜉𝑛 ≥ 0 ∀ 𝑛 ∈ 𝑁

(3)

Where C is a constant that determines the penalty given to outliers: when C is large more outliers are

tolerated but that may lead to overfitting. N is the set of training samples.

However, in this project SVR data is transformed with a non-linear function in order to properly

represent the non-linear nature and complexity of PV power production. This transformation is

commonly referred to as the ‘kernel trick’ and is further explained in [8]. The kernel transformation

that seemed to improve model performance the most was a 5th degree polynomial function. Results

for this regression are shown in table IV. The model was implemented using scikit-learn.

Table IV. SVR model performance by location.

Location Training 𝑹𝟐 Testing 𝑹𝟐

Perth 0.8509 0.8523

Chapman 0.8143 0.7982

Bogotá 0.8357 0.8343

K-Nearest Neighbors (KNN)

The K-Nearest Neighbors algorithm is commonly used for both classification and regression

problems because it is mathematically simple to implement and understand. In its simplest form, the

KNN algorithm searches for the nearest training sample for any given input features for which a

prediction must be made and assigns the training value to the prediction. In this simple case, the

value of K (number of neighbors to search for) equals 1. When a larger number of K is considered, the

prediction is assigned a weighted average of the value of the K nearest training samples [8]. So,

prediction values (y’) in a given set N, based on the input value x’ can be calculated from the K

nearest neighbors using equation 4:

 𝑦𝑛
′ =

1

𝐾
∗ ∑ 𝑤𝑖𝑦𝑖

𝐾

𝑖=1

 , ∀ 𝑛 ∈ 𝑁 (4)

Where wi represents the weights assigned to each K-neighbor.

To find the nearest neighbor, Euclidian distance is calculated. In a n-dimensional space, if point

a=(a1,a2,…,an) and point b=(b1,b2,…,bn), distance 𝑑𝑎→𝑏 is calculated as:

 𝑑𝑎→𝑏 = √∑(𝑎𝑖 − 𝑏𝑖)2

𝑛

𝑖=1

 (5)

In this project, to determine which training sample is closest to the test sample, Euclidian distance is

calculated and a simple non-weighted average among the K neighbors assigns the value to the

prediction. To determine which value of K yields the best results, an iteration between K=2 to K=10 is

performed and plotted. The best value of K is when the test 𝑅2 score is maximized.

a) b)

c)

Figure 8. KNN iterations to obtain the optimal value of K in a) Perth, b) Chapman, and c) Bogotá.

Table V. KNN model performance by location.

Location Optimal

value of K

Test 𝑹𝟐

score

Perth 3 0.8655

Chapman 3 0.8326

Bogotá 6 0.8100

Random Forest (RF)

A Random Forest Regression is an algorithm that is a group of Decision Trees, a simpler algorithm

that consists in a series of if/else conditions that lead to a decision or output value. The amount of

if/else conditions in the model is usually referred to as depth and determines the model’s complexity.

However, depth is a problematic hyperparameter that must be properly selected because, on one

hand, if depth is shallow (i.e. a small value) the model is not capable of learning complex patterns and

therefore it is not a particularly interesting or useful model. On the other hand, if the model is too

deep (i.e. the depth is a large value) the model ‘memorizes’ all the training data, which leads to a

perfect performance on training data but poor performance on new data – this problem is known as

overfitting. Individual Decision Trees' main setback is their tendency to overfit data easily. A

simplified example (with depth=1) is represented in figure X for explanatory purposes. In that

example, all data samples with ghi greater than 300 W/m2 are assigned to the node in the left, while

the rest are assigned to the node in the right. Then, when the model is assigned input data to make a

prediction, it verifies if ghi is greater than 300 W/m2 or not. Depending on the condition, the

prediction is assigned the average power value of all training samples that fulfill the condition based

on ghi.

Figure 9. Decision tree example.

When Decision Trees are grouped into a Random Forest, risk of overfitting tends to decrease. This

happens because a RF creates many Decision Trees that each perform differently, so when an average

of the results of all the different trees is calculated, risk of overfitting decreases [8].

In this project, a Random Forest was built based on tuning two main hyperparameters: Number of

trees and tree depth. As the number of trees is increased, model performance should always increase

but so does training time. In this case, the number of trees was set to 100 because beyond that

number, model performance did not improve significantly. Ideal tree depth was found iterating

through different depth values such that overfitting is minimized - the difference between training

and testing 𝑅2 must be as small as possible – and model performance is acceptable.

a) B)

c)

Figure 10. Random Forest depth iteration with 100 trees in a) Perth, b) Chapman, and c) Bogotá.

The best value of depth for each location is selected visually and the resulting model performances

are shown in table VI.

Table VI. RF model performance by location.

Location Tree

Depth

Training

𝑹𝟐

Testing

𝑹𝟐

Perth 8 0.8706 0.8526

Chapman 6 0.7757 0.7507

Bogotá 7 0.8154 0.7991

Single Layer and Deep Neural Networks (NN)

Neural Networks (NN) are one of the most popular type of Machine Learning models today because

of their excellent performance and infinite different variations, which lead to a high versatility in both

classification and regression problems. Basic Neural Networks have one or more hidden layers

stacked in front of the first input layer, as shown in figure 11. A Single Layer NN is a network with

only one hidden layer (figure 11a) , while a Deep NN is a network with many stacked hidden layers

(figure 11b). Deep NN have become increasingly popular and are the basic forms of a new type of

Machine Learning algorithms known as Deep Learning. Naturally, Deep NN are more complex than

Single Layer NN which leads to better performance on more complex data. Also, Deep Learning

models tend to perform better when the amount of training sample increases, hence the growing

interest on what is known as ‘Big Data’, which is simply datasets with large amounts of samples –

usually in the hundreds of thousands, millions, or more [9].

a) b)

Figure 11. Neural Network representations for a) Single Layer NN, and b) Deep NN. Blue circles represent the

input features, green circles represent hidden neurons, and the red circles represent the output variable. The

connections between circles represent weights.

Forward propagation is performed through the layers to calculate the output variable for each

training sample. After that, weights are adjusted in order to minimize loss through a process called

back propagation. This forward and back propagation process is iterated through all the training

samples. NN architectures can be defined very briefly by the number of hidden layers (L), the number

of neurons in each hidden layer (N), and the activation function in each layer (a).

Forward propagation consists in performing calculations on data through each node or neuron in the

network, from left to right. In general, each neuron in each layer performs two calculations based on

the following parameters: the previous layer neuron’s output (𝑎𝑛
[𝐿−1]

), the corresponding weight

between any two neurons (𝑤𝑛
[𝐿]

), an activation function (𝑎𝑛
[𝐿]

), and a bias constant (b). The first

calculation yields the value of 𝑧𝑛
[𝐿]

, shown in equation 6. [11]

Note: the superscript surrounded by square brackets denotes the layer a neuron is in and the

subscript denotes the position of a neuron within a layer.

 𝑧𝑛
[𝑙]

= 𝑤𝑛
[𝑙]

𝑎𝑛
[𝑙−1]

+ 𝑏 ∀ 𝑙 ∈ 𝐿, 𝑛 ∈ 𝑁 (6)

The second calculation performed by a neuron is the activation function, which is a hyperparameter

denoted by g(z). Therefore, the output of any neuron is its activation function. In this case, a rectified

linear unit (ReLU) activation function is used:

 𝑎𝑛
[𝐿]

= 𝑔[𝑙](𝑧𝑛) (7)

 𝑔[𝑙](𝑧𝑛) = max (0, 𝑧𝑛
[𝐿]

) (8)

Forward propagation is performed across neurons until reaching the output neuron. The result of the

output neuron’s activation function is the prediction made by the neural network.

To determine if a prediction performed by the neural network (𝑦̂𝑖) is close to the actual value (𝑦𝑖), a

loss function (L) is defined. There are many different types of loss functions, but one of the most

popular is the mean squared error (MSE), described by equation 9, where N represents the set of

training samples.

 𝐿(𝑦𝑖 , 𝑦̂𝑖) = 𝑀𝑆𝐸 =
1

𝑁
∗ ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

 (9)

A process called gradient descent is performed to update the parameters of the neural network. The

calculations, known as backpropagation, are performed from right to left across the network for each

training sample. The parameters that must be updated are the weights (w) and the bias constants (b)

and are grouped in a single variable θ(w,b). Their impact on the loss function, represented by J(θ), is

calculated using derivatives. This impact is referred to as the gradient of the loss function (∇𝐽). Neural

Networks usually have thousands of parameters that must be calculated, so all calculations are made

using matrices. The explanation made in this section is a simplified version of what is found in [11].

 ∇𝐽 = {

𝛿𝐽

𝛿𝑤
=

𝛿𝐽

𝛿𝑎

𝛿𝑎

𝛿𝑧

𝛿𝑧

𝛿𝑤
𝛿𝐽

𝛿𝑏
=

𝛿𝐽

𝛿𝑎

𝛿𝑎

𝛿𝑧

𝛿𝑧

𝛿𝑏

 (10)

Parameters are updated across each training sample based on the hyperparameter of learning rate α,

which in this case was 0.0001.

 𝜃 ≔ 𝜃 − 𝛼 ∗ ∇𝐽 (11)

In this case, a procedure to find an ideal number of hidden neurons for the Single Layer NN was

implemented. Increasing the number of neurons in a layer tends to improve performance, but after

reaching a threshold, when there are too many neurons, training time and model complexity increase

while gains in performance do not. Hence, having too many hidden neurons in a single layer is

unjustifiable. All NN in this project were built with the Rectified Linear Unit (ReLU) activation

function.

a) b)

c)

Figure 12. Single Layer NN performance scores for different numbers of hidden neurons in a) Perth, b)

Chapman, and c) Bogotá.

The selected number of neurons for each location is obtained graphically and results are shown in the

following table:

Table VII. Single Layer NN model performance by location

Location Hidden

Neurons

Training

𝑹𝟐

Testing

𝑹𝟐

Perth 7 0.8371 0.8377

Chapman 14 0.7943 0.7791

Bogotá 12 0.8424 0.8415

A Deep NN is then constructed with the first three layers having the same number of hidden neurons

as the Single Layer model shown previously. The next three layers have more hidden neurons

because according to [9], deep layers can calculate more complex functions and therefore should have

more neurons as the first few layers.

The results for a 6 Layer-Deep NN are shown in table VIII.

Table VIII. Deep NN model performance by location.

Location Training 𝑹𝟐 Testing 𝑹𝟐

Perth 0.8419 0.8419

Chapman 0.8420 0.8271

Bogotá 0.8460 0.8421

V. Results and Model Comparison

In order to visualize how predictions behave, two types of plots are presented based on the results of

the best model for each location: A KNN in Perth and Deep NN for Chapman and Bogotá. First, a fit

plot is shown, where vertical and horizontal axes represent the real data values and the predictions,

respectively. Ideally, points in this plot should fall near to a line with positive slope of 1 and samples

on the line represent a perfect fit.

a) b)

c)

Figure 13. Fit of prediction vs. test data in a) Perth, b) Chapman, and c) Bogotá.

The second type of plot requires reordering testing and training data that was previously split

randomly. This plot shows the power production curve vs. time of any day across the complete

dataset. The plot also shows predictions for testing samples in any given day. Different days were

selected for visualization in each location.

a)

b) c)

Figure 14. Power curve showing predictions vs. real data in a) Perth, b) Chapman, and c) Bogotá.

Finally, a comparison between all models across all locations is made:

Figure 15. Model comparison by type and location.

VI. Discussion of results

Results show that Machine Learning algorithms built in this project do not differ greatly from one

another, considering all the location datasets that were used, as seen in Figure 13. It is also clear that

all models except for the Single Layer NN performed best in Perth. The reason for this might be that

data from Perth seems graphically to be the most complete across the entire timeseries – there is no

month in which there is a clear ‘hole’ of missing data, as seen in Figure 3a. On the other hand, models

that were fed with data from Chapman seem to perform the worst, data which has a clear hole

representing missing data in figure 3b. Overall, Deep NN seem to be the best model because

performance results are all above 0.8 and seem to be similar for each location. KNN models also

perform well, but there is a clear difference in performance between Perth and Bogotá. Figure 12

shows that models are properly learning patterns for PV power because predictions (blue points) fall

very close to the real data power curve.

Figure 13 shows a positive tendency between real data and predictions – predictions seem to be well

fitted to the real data. This is clear because most scatter points are close to the line with slope 1. This

means that the models are good making predictions, despite some outliers (data points far from the

red line).

It was mentioned in this paper that ensuring data is evenly distributed is important for training.

However, results from Bogotá - in which data was exponentially distributed – showed good

performance compared to the other datasets. This may be happening because the training-testing split

was performed randomly, so enough data samples associated with high, medium, and low power

production are used for training. Therefore, models seem to properly learn patterns in scenarios

where power production is low, medium, and high.

The study available in [4] obtains similar results as this study in terms of the determination coefficient

and Neural Networks, except the predictions they make have a 24-hour temporal resolution. They

obtain an average R2 of 0.81 on a 1-3-year experiment using NARX Neural Networks. However, as the

experiment duration increases beyond 3 years, their model performance increases to 0.867 using a 10-

year long dataset. Also, that study implements a Bayesian hierarchical modeling using an extended

Kalman filter (Bayesian-EKF) which yields an average R2 of 0.959. Considering the level of complexity

of the models developed in this study, our results are satisfactory.

VII. Conclusions and future work

As discussed in section VI of this paper, having better datasets can lead to better performance. A PV

power dataset can be considered as ‘good’ if it has a large amount of data samples with a small

timestep in order to make short term predictions, data samples are continuous in time (i.e. no missing

values), and data is properly preprocessed before training supervised learning models. Many

Machine Learning researchers say data manipulation is the most important part of the methodology

used to solve problems using Machine Learning.

Machine Learning models trained in this project were capable of generating accurate short-term

predictions only on roughly one year of PV data. This shows that Machine Learning is a potentially

powerful tool to generate predictions for the renewable energy industry, since performance is

expected to improve even more with more data samples. This can be a promising way to improve

reliability of renewable energy systems, one of their main flaws in the past.

Also, an attractive characteristic of these models is their relative ease to implement, given data

preprocessing is properly done. In this project, models were implemented with Python library Sci-kit

Learn, a user-friendly Machine Learning library. Simplicity is also achieved because this methodology

allows the researcher to skip certain technical steps used for a traditional PV system analysis such as

panel inclination, inverter configuration, among others.

As with many other Machine Learning applications, Deep Learning seems to be the most consistent

ways to solve problems, especially because Deep Learning algorithms perform even better on large

amounts of data. In this sense, future work in this field should be oriented towards developing more

complex Deep Learning models that are specifically designed for timeseries analysis, such as Long

Short-Term Memory (LSTM) Neural Networks.

References

[1] IRENA, «Renewable Power Generation Costs 2018,» Abu Dhabi, 2019.

[2] Vox News, «The 'duck curve' is solar energy's greatest challeng,» May 2018.

[Online]. Available: https://www.youtube.com/watch?v=YYLzss58CLs [. [Last

access: March 2019].

[3] K. Jäger, O. Isabella, A. H. Smets, R. A. van Swaaij and M. Zeman, Solar Energy

Fundamentals, Technology, and Systems, Delft: Delft University of Technology,

2014.

[4] S. Hussain and A. AlAlili, «Online Sequential Learning of Neural Networks in Solar

Radiation Modeling Using Hybrid Bayesian Hierarchical Approach,» Journal of Solar

Energy Engineering, vol. 138, 2016.

[5] W. Lee, K. Kim, J. Park, J. Kim and Y. Kim, «Forecasting Solar Power Using Long-

Short Term Memory and Convolutional Neural Networks,» IEEE Access, vol. 6, 2018.

[6] J. M. Bright, S. Killinger and N. A. Engerer, "Data article: Distributed PV power data

for three cities in Australia," Journal of Renewable and Sustainable Energy, no. 11, 2019.

[7] C. Feng and J. Zhang, «Hourly-Similarity Based Solar Forecasting Using Multi-

Model Machine Learning Blending,» IEEE, Portland, 2018.

[8] W. F. Holmgren, C. W. Hansen and . M. A. Mikofski, «pvlib python: a python

package for modeling solar energy systems.,» Journal of Open Source Software, vol.

884, nº 29, p. 3, 2018.

[9] A. C. Müller and S. Guido, Introduction to Machine Learning with Python, Boston:

O'Reilly Media, 2016.

[10] MathWorks, inc, «Understanding Support Vector Machine Regression,» [Online].

Available: https://www.mathworks.com/help/stats/understanding-support-vector-

machine-

regression.html#:~:text=Linear%20SVM%20Regression%3A%20Primal%20Formula,-

Suppose%20we%20have&text=subject%20to%20all%20residuals%20having,these%2

0constraints%20for%20all%20points.. [Last access: June 2020].

[11] A. Ng, «Neural Networks and Deep Learning,» deeplearning.ai, Palo Alto, 2020.

[12] R. Bayindir, . M. Yesilbudak, M. Colak and N. Genc, «A Novel Application of Naïve

Bayes Classifier in Photovoltaic Energy Prediction,» IEEE, Cancún, 2017.

[13] K. Chen, Z. He, K. Chen, J. Hu and J. He, «Solar Energy Forecasting With Numerical

Weather Predictions on a Grid and Convolutional Neural Networks,» from IEEE

Conference on Energy Internet and Energy System Integration, Beijing, 2019.

[14] C. Chen, D. Shanxu, C. Tao and L. Bangyin, «Online 24-h solar power forecasting

based on weather type,» Science Direct, 2011.

[15] A. Laouafi, M. Mordjaoui and D. Dib, «One-Hour Ahead Electric Load and Wind-

Solar Power Generation Forecasting using Artificial Neural Network,» de 6th

International Renewable Energy Congress (IREC), Sousse, 2015.

[16] D. Lee and K. Kim, «Recurrent Neural Network-Based Hourly Prediction of

Photovoltaic Power Output Using Meteorological Information,» Energies, 2019.

