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Abstract 
Many glaciers in high-mountain regions exhibit a debris cover that moderates their response to 

climatic change compared to clean-ice glaciers. Studies that integrate long-term observations of 

debris-covered glacier mass balance, velocity, surface debris evolution and geomorphological 

changes (such as ponds and ice cliffs) are relatively few. This thesis aims to investigate temporal 

and spatial changes in the dynamics of debris-covered glaciers in the European Alps and the 

Himalayan Manaslu region. A range of in situ data collection methods and remotely sensed data 

was analysed to further understand debris-covered glacier evolution and future response to 

climatic change.  

Glacier surface evolution was mapped at Miage Glacier, Italian Alps, over the period 1952 – 2018 

and at three easterly-flowing glaciers in the Manaslu region of the Nepalese Himalaya from 1970 

to 2019; namely Punggen Glacier, Hinang Glacier and Himal Chuli Glacier. Surface elevation change 

was quantified over the 28-year and 49-year time periods respectively based on digital elevation 

model (DEM) differencing, in addition to surface velocity analysis. Bathymetric and ground-based 

photogrammetry surveys were undertaken to assess glacial lakes (inclusive of supraglacial ponds 

and ice-marginal lakes) and adjacent ice cliff evolution at Miage Glacier in 2017 and 2018, and at 

Hinang Glacier in 2019.  

Sustained negative mass balance observed at both Miage Glacier (−0.86 ± 0.27 m w.e. a−1 from 

1990 – 2018) and the Manaslu glaciers (mean of −0.29 ± 0.05 m w.e. a−1, 1970 – 2019) has coincided 

with similar stages of debris-covered glacier evolution regarding increased in debris-cover extent, 

limited reduction in terminal position, substantial reductions in surface velocity (−46%) and 

increasing development of supraglacial ponds and ice cliffs. Supraglacial ponds and ice cliffs have 

important roles in overall ablation at all surveyed glaciers accounting for up to eight times the mean 

surface lowering rates. Despite these broad similarities between regional responses, nonlinear 

variability was observed at both Miage Glacier and the Manaslu glaciers, which showed highly 

variable patterns of surface elevation change and dynamic flow behaviour. Glacier hypsometry and 

local variability in precipitation in addition to topographic controls, which regulate ice flux, are 

considered to account for individual glacier response providing further uncertainties when 

modelling future debris-covered glacier response to climatic change.  

The inconsistency of these glacier dynamics highlight the complex, nonlinear changes of debris-

covered glaciers over differing spatial and temporal scales. The results of this thesis add to the 

current knowledge base and offer a unique and valuable insight into the variability of debris-

covered glacier evolution in two comparatively different environmental settings.  
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Chapter 1 : Introduction and research context 
1.1. Introduction 
Most glaciers around the world are receding or thinning due to climatic change, but local 

topographic and dynamic factors can exert a strong influence on the rate of glacier change (IPCC, 

2014; Zemp et al., 2015). This thesis investigates the evolution of debris-covered glaciers; a sub-set 

of glaciers, the study of which has risen to prominence in recent years because of their importance 

as water resources in regions of the world that depend on glaciers for meltwater supply (e.g. 

Immerzeel et al., 2010, 2019; Irvine-Fynn et al., 2017; Biemans et al., 2019; Wood et al., 2020). 

Despite this, debris-covered glacier response to climatic variability remains poorly understood. 

Further investigation of the dynamics and evolutionary processes are required to better understand 

the ablation patterns and future response to climatic change. 

This chapter will introduce the background to the project and rationale for this research leading to 

the study aims and objectives as presented in Section 1.3, and full structure of the thesis presented 

in Section 1.4. Further detailed analysis of the existing research will be examined in ‘Chapter 2 – 

Debris-covered glaciers: a literature review’ to further highlight gaps in the research and the 

existing knowledge of debris-covered glaciers.  

 

1.2. Background 
There are c.198,000 glaciers across the globe (excluding ice sheets) covering a total of 

726,800 km2  ± 34,000 km2 (Pfeffer et al., 2014) according to the Randolph Glacier Inventory v.6.0 

(RGI6.0) (RGI Consortium, 2017) with 271,760 km2 associated with high-mountain regions (Figure 

1.1, Table 1.1). Although glaciers cover just 0.5% of the Earth’s land surface, meltwater and runoff 

are important contributors to global sea level rise and influence both global and local communities 

(Radić et al., 2014).  
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Figure 1.1: Global glacier distribution based on data from the RGI6.0 (RGI Consortium, 2017). 
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Table 1.1: Glacierised area (km2) excluding ice sheets from the Randolph Glacier Inventory  (RGI 
Consortium, 2017) ≥1 km2 taken from Herreid and Pellicciotti (2020) based on the distribution of 
mountain areas based on the IPCC (Hock et al., 2019) and derived percentage of debris cover per 
region.  

Region Glacierised area extent (km2) Percent debris-covered (%) 
Alaska 79280 14.2 
Western Canada and US 10678 5.2 
Iceland 10601 10.0 
Central Europe 1471 15.7 
Scandinavia 2155 3.5 
Caucasus and Middle East 777 14.0 
North Asia 1497 6.1 
High Mountain Asia 75557 11.5 
Low Latitudes 1511 3.5 
Southern Andes 23948 2.8 
New Zealand 580 19.6 

 

Mountain glaciers have been experiencing sustained negative mass balance in response to recent 

climate change, resulting in overall recession and thinning (Huggel et al., 2002; Diolaiuti et al., 2005; 

Reid and Brock, 2014; Zemp et al., 2015). Local topographic and dynamic factors can cause 

substantial variations in the response of individual glaciers to this climatic trend (Pachauri et al., 

2014; Zemp et al., 2015). The role of supraglacial debris cover is one such factor that can have a 

profound impact on glacier response to climatic forcing (Scherler et al., 2011; Benn et al., 2012). 

There has been an increase in the number and extent of debris-covered glaciers globally since the 

Little Ice Age (c. 1400 - 1900) (Yamada, 1998; Röhl, 2008; Carrivick and Tweed, 2013; Westoby et 

al., 2014; Rowan, 2017). As shown in Figure 1.1, debris cover is now present on 4.4% of the global 

glacier area (Scherler et al., 2018) and 7.3% of the mountain glacier area (Herreid and Pellicciotti, 

2020).  Debris-covered glaciers are increasingly prevalent in high-mountain regions owing to the 

increased weathering rates and rockfall activity within tectonically active regions resulting in a high 

rate of debris being transported to glacier surfaces through direct deposition and melt out of 

englacial debris septa (Goodsell et al., 2005a; Kirkbride and Deline, 2013; Rowan et al., 2015). As a 

result of such processes, debris-covered glaciers are prevalent in regions such as New Zealand 

(Anderson and Mackintosh, 2012; Dunning et al., 2015), Alaska (Herreid and Pellicciotti, 2020), 

Patagonia (Glasser et al., 2016), Andes (Reynolds, 1992), European Alps (Huggel et al., 2002; 

Diolaiuti et al., 2005; Paul et al., 2011; Reid and Brock, 2014) and the Pamirs, Karakorum and 

Himalaya (Reynolds, 1998; Scherler et al., 2011; Bolch et al., 2012; Gardelle et al., 2013). A 

substantial proportion (17.2%) of glaciers with debris cover are located within the South East Asia 

region (Table 1.1).  
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The presence of supraglacial debris cover alters glacier ablation and typically retards ablation under 

a thick debris layer (Østrem, 1959; Mattson et al., 1993; Nicholson and Benn, 2006). However, some 

comparisons with clean-ice glaciers have shown that debris-covered glaciers exhibit similar thinning 

rates at comparable elevations to clean-ice glaciers (e.g. Pellicciotti et al., 2015; Vincent et al., 2016). 

Recent studies have shown variable melt rates result in an undulating glacier surface topography 

and supraglacial features that commonly develop on debris-covered glaciers, such as supraglacial 

ponds and ice cliffs, which act as localised ablation hotspots and, therefore, contribute 

disproportionally to total ablation rates (e.g. Sakai et al., 2000; Buri et al., 2016b; Miles et al., 2016; 

Thompson et al., 2016). Yet, long-term studies of glacier surface evolution and topography are 

limited. Thus, it is important to assess the number, location and size of supraglacial ponds and ice 

cliffs in relation to surface evolution when considering the overall mass balance, glacier surface 

energy balance and response of debris-covered glaciers to future climatic change. 

The relationship between glacier dynamics and supraglacial pond formation is complex and remains 

unclear as quantitative measurements are both limited spatially and temporally (Quincey et al., 

2007; Watson et al., 2016). This highlights the need for more research to better understand the 

evolution of debris-covered glaciers and the development of surface features including supraglacial 

ponds and ice cliffs. This would provide detailed information regarding the state of debris-covered 

glaciers worldwide in the current climate and inform models for predicting future response, to aid 

water resource management and prediction and mitigation of Glacial Lake Outburst Floods (GLOF) 

events. 

This research investigates debris-covered glacier dynamics in the European Alps and in the Manaslu 

region of the Nepalese Himalaya. Miage Glacier in the European Alps is a well-studied and easily 

accessed debris-covered glacier; accessibility was important for the deployment of several data 

collection techniques and multi-annual repeat surveys. Research methodologies were optimised at 

Miage Glacier before undertaking fieldwork at Hinang Glacier in the Manaslu region, which has not 

been studied extensively and is situated in a less accessible location where deployment of field 

equipment was more challenging. Comparison of results between the two locations will also help 

determine whether the evolution of debris-covered glaciers is strongly controlled by regional or 

environmental factors.  
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1.3. Aims and objectives 
The overall aim of this research is to investigate debris-covered glacier evolution and dynamics in 

the European Alps and the Himalayan Manaslu region using a range of in situ data collection 

methods and remotely sensed data. The following objectives are identified to fulfil the overall aim 

of this thesis: 

Objective 1: To complete glacier surface mapping including surface structures, development of 

debris cover, supraglacial ponds and ice cliffs on the Alpine Miage Glacier (1952 – 2018) and 

Himalayan Hinang Glacier (1970 – 2019).  

Objective 2: To assess changing glacier dynamics through quantification of glacier surface elevation 

change and surface velocity at Miage Glacier (1990 – 2018) and Hinang Glacier (1970 – 2019).  

Objective 3: To examine the impact of supraglacial ponds, and ice-marginal lakes and adjacent ice 

cliffs on glacier ablation rates at Miage Glacier and Hinang Glacier. 

 

1.4. Structure of thesis  
Figure 1.2 illustrates the structure of the thesis. Chapter 2 will provide an in-depth literature review 

of the current state of research regarding debris-covered glacier dynamics. Chapter 3 will describe 

the specific study sites highlighting previous research conducted at each of the sites and rationale 

for selection. Four data chapters present the distinct components of research and data collection, 

which fulfil the above aims and objectives. Methods and accuracy assessment will be discussed in 

each of the chapters to which they relate. Chapter 4 presents the surface evolution of Miage Glacier 

from 1952 to 2018. Chapter 5 details the glacier dynamics of Miage Glacier from 1990 to 2018 based 

on analysis of Digital Elevation Model (DEM) differencing and surface velocity. Chapter 6 details the 

impacts of glacial lakes and ice cliffs on ablation rates assessed through bathymetric and 

photogrammetry surveys carried out at Miage Glacier over two summer survey periods in 2017 and 

2018. The final data chapter (Chapter 7) presents analysis of glacier dynamics and evolution of 

Hinang Glacier, and the two neighbouring glaciers, in the Manaslu region of the Nepalese Himalaya. 

A discussion chapter is presented in Chapter 8 to identify key debris-covered glacier dynamics and 

evolutionary processes followed by conclusions in Chapter 9.  
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Figure 1.2: Flow chart of the thesis structure.  
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Chapter 2 : Debris-covered glaciers: a literature review 
2.1. Introduction  
Accumulated rock debris on glacier surfaces can substantially influence glacier dynamics (Benn et 

al., 2012; Rowan et al., 2015). Debris cover is present on 44% of Earth’s glaciers and is fundamental 

to include in global glacier models to better understand future response to a changing climate 

(Herreid and Pellicciotti, 2020). This chapter will provide a review of the existing literature to date, 

relevant to the three core objectives of the thesis (Section 1.3). This assessment of the current 

research situation will highlight the characteristics and evolution of debris-covered glaciers, and the 

impacts of supraglacial ponds and ice cliffs on their mass balance. This review will highlight where 

further research is required to aid our understanding and advance modelling efforts to accurately 

assess the future response of debris-covered glaciers. The research gaps identified from the 

literature review are then discussed.  

This thesis uses the term ‘glacial lakes’ to refer to all water bodies inclusive of supraglacial, 

proglacial and ice-marginal ponds and lakes, regardless of size or location. Specification of water 

bodies will then be referred to by the terms as used above. The distinction between supraglacial 

ponds and lakes has not previously been well defined and are often used interchangeably (Watson 

et al., 2016). However, Watson et al. (2016) quantified the areal limit of supraglacial ponds as 

20,000 m2 and lakes are thus accepted to represent water bodies larger than this. The terms will be 

used in this way throughout this thesis for clarity and comparison with similar studies. 

 

2.2. Glacier response to climatic change 
Globally, glaciers are receding in response to climatic warming (Zemp et al., 2015; Huss and Hock, 

2018). Rising global temperatures have resulted in the disappearance of numerous glaciers 

(Vaughan et al., 2013), particularly small mountain glaciers, which are highly sensitive to 

environmental change. Observed glacier change and variability is representative of the glacier 

surface energy balance and combined influence of the components.  

 

2.2.1. Global glacier change 
Since the early twentieth century, glaciers around the world have been experiencing negative mass 

balances (Figure 2.1) with reduced accumulation from snowfall, and increased ablation from 

warming temperatures albeit with a few exceptions (Benn and Evans, 2010; Zemp et al., 2015). 

Enhanced glacier ablation, inclusive of mass loss from the system through melt, sublimation, and 

avalanching in a terrestrial setting and by calving of ice blocks and icebergs in marine and lacustrine 

environments (Figure 2.2), in combination with reduced ice flux from the accumulation zones has 

resulted in negative mass balances on a global scale (Figure 2.1). The global mean annual value of 
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−0.54 metres per year water equivalent (m w.e. a−1),  between 2000 and 2010 shows a strong global 

signal (Zemp et al., 2015). Glaciers typically respond to negative mass balance by terminal retreat 

or downwasting, or both. Increased rates of terminal retreat have been observed at unprecedented 

rates since the early 21st century in response to the prolonged periods of negative mass balance 

(Zemp et al., 2015). The changing state of glaciers affect seasonal runoff, which provides valuable 

water resources in remote communities and are therefore important to monitor (Irvine-Fynn et al., 

2017; Burger et al., 2019).  

 

Figure 2.1: Global cumulative mass change relative to 1976 from 30 global reference glaciers with 
continuous observations as compiled by the World Glacier Monitoring Service (WGMS, 2019). 
Cumulative values relative to 1976 are represented on the y-axis. 

 

 

2.2.2. Glacier surface energy balance  
The glacier surface energy balance is dependent upon the interactions of the ice surface with long 

and shortwave incident radiation, sensible heat flux, and latent heat flux (Benn and Evans, 2010). 

The energy balance ultimately controls the amount of energy available for ablation and is therefore 

a fundamental component in the resulting mass balance and observed response of glaciers to 

climatic change (Figure 2.2). The net energy balance at a glacier surface is calculated as in Equation 

2.1. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) + (𝑄𝑄𝑄𝑄 + 𝑄𝑄𝑄𝑄) + 𝑄𝑄𝑄𝑄 + 𝑄𝑄𝑄𝑄 − 𝑄𝑄𝑄𝑄  Equation 2.1 

Where SWin represents incoming shortwave radiation, SWout outgoing radiation, LWin incoming 

longwave radiation, LWout outgoing radiation, QH sensible heat transfer, QE latent heat transfer, 

QG ground heat flux, QR energy from precipitation, and QT is energy required for the phase change 

of ice (Cuffey and Paterson, 2010). Thus, the surface energy balance denotes the energy available 
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for glacier ablation. As such, glacier fluctuations, such as change in length, area, volume and mass, 

provide a useful indication of the energy balance and thus, climate (Figure 2.2).  

 

Figure 2.2: Energy balance and inputs and outputs within a glacier system, which affect the resulting 
glacier mass balance.  

 

The presence of a supraglacial debris layer slows the transfer of energy between the atmosphere 

and the ice surface, ultimately delaying the response to either positive or negative surface energy 

balances. Properties of the debris layer provide additional controls on the rate of energy transfer 

between the atmosphere and ice surface (Rowan et al., 2021). Such properties include the debris 

thickness, lithology, porosity, grain size, moisture content and thermal capacity of the debris 

(Nicholson and Benn, 2006; Evatt et al., 2015). Thus, the debris properties result in high levels of 

variability between glaciers with a debris cover.  

 

2.3. Characteristics of debris-covered glaciers 
Debris-covered glaciers are prevalent in tectonically active, high-mountain regions due to the 

provision of debris from valley sides to glacier surfaces. Debris-covered glaciers therefore exist in a 

number of locations as highlighted in Table 1.1, including both the European Alps (Huggel et al., 

2002; Diolaiuti et al., 2005; Paul et al., 2011; Reid and Brock, 2014; Berthier et al., 2016) and across 

the Himalaya (Reynolds, 1998; Scherler et al., 2011; Bolch et al., 2012; Gardelle et al., 2013; Herreid 

and Pellicciotti, 2020). Evidence has shown that debris cover is increasing in area in multiple regions 

as climate driven destabilisation of valley sides results in increased rockfall events (Ravanel et al., 
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2017). Such increases in debris-cover extent have been observed in the European Alps (Deline, 2005; 

Kellerer‐Pirklbauer et al., 2008; Mazué et al., 2009), and across the Himalaya (Scherler et al., 2011; 

Gibson et al., 2017a). Debris cover in the Everest region increased by 17.6 ± 3.1% between 1962 

and 2011 (Thakuri et al., 2014) and is expected to continue to increase in the future (Rowan et al., 

2015; Herreid and Pellicciotti, 2020).  

The presence of debris cover affects glacier ablation rates and alters ablation patterns. Thick debris 

(>5 cm) restricts conduction of surface heat to the ice and acts to insulate the underlying ice, 

reducing ablation rates (Østrem, 1959; Nakawo and Rana, 1999; Nicholson and Benn, 2006). The 

critical thickness for debris to have an insulating effect has been found to vary from glacier to glacier 

and even from one point to another on the same glacier (Kirkbride and Dugmore, 2003). However, 

once debris thickness exceeds ~40 cm, ablation has been shown to reduce substantially at a number 

of sites (Mattson et al., 1993; Nicholson and Benn, 2006). Conversely, a thin debris layer (<2 cm) 

lowers albedo, thereby increasing the amount of energy conducted to the ice surface enhancing 

ablation rates. This relationship of increased ablation under an increasing debris thickness to a 

critical thickness followed by a substantial reduction in ablation rate was first identified by Østrem 

(1959) and is often referred to as the Østrem Curve (Figure 2.3). Glacier-scale mass balance is 

therefore strongly influenced by the presence, extent, and thickness of debris on the glacier surface 

(e.g. Gibson et al., 2017a). 

 

Figure 2.3: The Østrem curve as derived from empirical measurements of the relationship between 
debris thickness and ice ablation rates on sample glaciers (redrawn from Mattson et al. (1993) as 
shown in Nicholson and Benn (2006)). Reprinted from the Annals of Glaciology with permission of 
the International Glaciological Society. 
 

The development of a thick debris cover has been identified on a number of glaciers during periods 

of sustained negative mass balance (Deline, 2005; Stokes et al., 2007; Kirkbride and Deline, 2013; 

Vincent et al., 2016; Gibson et al., 2017a). Once a thick debris cover develops (>40 cm) the insulating 

effect shields against increasing temperatures and debris-covered glaciers typically exhibit a 



Page | 11  
 

nonlinear response to climatic warming (Benn et al., 2001) and have been considered to be less 

sensitive to climatic changes than clean-ice glaciers (Scherler et al., 2011; Nuimura et al., 2012). 

Consequently, Rowan et al. (2015) suggested that, irrespective of any potential current climatic 

warming slowdowns, debris-covered glaciers will continue to experience a period of less negative 

mass balance resulting in longer, decadal response times compared to clean-ice glaciers. Thus, a 

number of debris-covered glaciers are observed at lower elevations with comparatively lower 

ablation rates in comparison to neighbouring clean-ice glaciers at similar elevations (Gardelle et al., 

2012, 2013).  

Although studies showed that significant glacier retreat was observed in the eastern and central 

Himalaya in line with the global trend during the early 21st century (Kääb et al., 2012; Gardelle et 

al., 2013), spatial variability in mass balance has been observed across the Himalaya with an east to 

west gradient in mass loss. Despite moderate to high mass losses in the eastern, central, and 

western Himalaya respectively, stable or slightly positive mass balances were observed in the 

Karakoram region (Figure 2.4) since the 1990s, referred to in the literature as the ‘Karakoram 

anomaly’ (Hewitt, 2005). The ‘Karakoram anomaly’ is attributed to local meteorological conditions 

and the influence of the Indian monsoon and predominant wind systems resulting in higher 

accumulation rates in the Karakoram (Bolch et al., 2012; Kääb et al., 2012; Farinotti et al., 2020).  

 

 

Figure 2.4: Regions of the Hindu Kush Himalaya based on ICIMOD (2014).  
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Debris-covered glaciers often exhibit a delayed response to climatic change resulting from the 

insulation provided by their thick surface debris layers, yet a number of remote sensing studies 

have observed similar ablation rates to that of clean-ice glaciers (Bolch et al., 2012; Pellicciotti et 

al., 2015). The hitherto unexplained variability of ablation patterns on debris-covered glacier 

tongues at comparable rates to clean-ice glaciers has since been referred to in the literature as the 

‘debris-covered glacier anomaly’ (Pellicciotti et al., 2015; Ragettli et al., 2016; Vincent et al., 2016; 

Salerno et al., 2017; Brun et al., 2019). The role of supraglacial debris cover in glacier mass balance 

thus drew further attention and highlighted a lack of long-term or in situ studies.  

Debris cover is rarely homogenous as it is deposited intermittently either directly through rockfall 

and avalanche events, lateral moraine derived deposits (van Woerkom et al., 2019), or arrives at 

the surface through debris septa melt out (Kirkbride and Deline, 2013). It is then subject to 

redistribution via meltwater and gravity falls (Rowan et al., 2015; Gibson et al., 2017a). Debris-

covered glaciers are therefore typically observed with varying thickness across the glacier surface 

(Zhang et al., 2011; Anderson and Anderson, 2018). As debris distribution and thickness varies, 

ablation is enhanced in regions of dirty ice or thin debris cover, leading to differential ablation 

across the glacier surface and the generation of an undulating or pitted surface topography (e.g. 

Mölg et al., 2020; Bartlett et al., 2021). As such, debris-covered glaciers often exhibit ice slopes or 

cliffs, debris-covered ridges and cones, depressions, and hollows (Iwata et al., 1980). Several studies 

have shown that enhanced rates of ablation at ice cliffs and supraglacial ponds, which are common 

features on debris-covered glaciers, act as localised hotspots and may account for the similar overall 

ablation rates to that of clean-ice glaciers (e.g. Sakai et al., 2000, 2002; Kääb et al., 2012; Buri et al., 

2016b; Miles et al., 2016, 2018; Brun et al., 2017). Conversely, multiple studies contest this and 

state that, despite higher ablation rates often observed at ice cliffs and supraglacial ponds, the 

insulating effect of a thick debris cover outweighs the ablation at such hotspots (Hambrey et al., 

2008; Ragettli et al., 2016; Vincent et al., 2016).  

As debris is transferred down-glacier, debris thickness increases towards the glacier terminus 

resulting in mass loss primarily by surface lowering more than through marginal recession 

(Hambrey et al., 2008). Mass loss is typically focused on clean-ice areas often located upglacier of 

the terminus whereas the terminus itself becomes covered in a thick layer of debris (Nakawo et al., 

1999; Benn and Lehmkuhl, 2000; Benn et al., 2012; Ragettli et al., 2016; Anderson and Anderson, 

2018). This substantially alters the mass balance gradient compared to clean-ice glaciers and 

promotes reduced driving stress and ice flow (Kääb, 2005; Quincey et al., 2009; Rowan et al., 2015; 

Dehecq et al., 2019) with a concave surface topography (Anderson and Anderson, 2018) (Figure 

2.5). Hence, the presence of debris cover has strong influences on ablation, retreat patterns, and 

glacier dynamics (Quincey et al., 2009; Scherler et al., 2011; Benn et al., 2012; Deline et al., 2012). 
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Morphological factors therefore have additional consequences for future glacier response and need 

to be further constrained.  

 

 

Figure 2.5: A conceptual model of the development of a Himalayan debris-covered glacier (a) in 
balance with climate, and (b) during net mass loss under a warming climate with an upglacier 
migration of the elevation line altitude (ELA). Reprinted from Rowan et al. (2015) with permission 
from Elsevier. 

 
Surface lowering on debris-covered glaciers is often associated with a reduction in surface velocity 

and reduced surface gradients promoting reduced driving stress (Quincey et al., 2009; Benn et al., 

2012; Dehecq et al., 2019). As glaciers recede, the snout becomes stagnant or inactive as observed 

both in the Alps (Capt et al., 2016; Mölg et al., 2019) and across the Himalaya (Quincey et al., 2009; 

Ragettli et al., 2016; Robson et al., 2018). Salerno et al. (2017) assessed 28 glaciers on the southern 

slopes of Mount Everest and identified that a reduced downstream surface gradient was the main 

morphological factor responsible for increased surface lowering and the development of 

supraglacial ponds in response to climatic change. However, the impact of ice cliffs was not 

assessed. Furthermore, debris cover and thickness were not significantly responsible for the 

development of ponds or surface lowering (Salerno et al., 2017). Brun et al. (2019) also observed 

that the glacier tongue slope and mean glacier elevation were the best predictors of glacier-wide 

mass balance in most regions across High-Mountain Asia (HMA). Glacier surface morphometry 

change is required to assess the impact on glacier surface energy balance and therefore important 

to accurately account for in melt modelling (Rounce et al., 2015).  
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Benn et al. (2012) summarised three regime stages that debris-covered glaciers progress through. 

In regime 1, the glacier is dynamically active and ablation predominantly occurs beneath the debris 

layer. Debris is transported efficiently downglacier, resulting in increased debris cover and thickness 

towards the terminus. Transition to regime 2 is enhanced by climatic warming, affecting ice influx 

and ablation rates. High ablation rates in the mid-ablation zone causes surface lowering rather than 

retreat of the ice margin resulting in a distinctive concave up-glacier profile (Reynolds, 2000; Bolch 

et al., 2011; Rowan et al., 2015; Anderson and Anderson, 2018). This reduces the driving stresses in 

the lower ablation zone, creating a positive feedback loop, resulting in lower velocity rates and 

eventual stagnation (Quincey et al., 2009; Dehecq et al., 2019) enabling meltwater to pond creating 

perched lakes. Regime 3 is associated with the intersection of supraglacial ponds with the base-

level due to surface lowering on areas with reduced surface gradients and low surface velocities 

(Quincey et al., 2007), which act to further promote ablation.  

 

2.4. Surface and structural evolution of debris-covered glaciers 
Analysis of debris-covered glacier evolution enables us to constrain timescales and rates of surface 

feature development aiding our ability to predict future response and implications for water 

resources or potential hazards. Structural glaciology has aided our knowledge and understanding 

of sediment distribution (e.g. Bennett et al., 1996), sediment-landforms associations (Roberson, 

2008) and glacier flow dynamics (Hambrey and Lawson, 2000; Hambrey et al., 2005; Hambrey and 

Clarke, 2019). Thus, this technique may provide information on the conditions leading to future 

glacier disintegration (Azzoni et al., 2017) and yields important details about the evolution of glacier 

dynamics in response to climatic change.  

A number of studies have produced detailed structural maps of both Arctic (Hudleston and Hooke, 

1980; Jennings et al., 2016) and alpine glaciers (Hambrey and Milnes, 1977; Glasser et al., 2003; 

Goodsell et al., 2005b; Herbst et al., 2006), polythermal (Hambrey et al., 2005), surging (Sharp, 1988; 

Lawson et al., 1994; Woodward et al., 2002) and more recently have highlighted the benefits of 

multi-temporal analysis (Hambrey et al., 2005; Glasser and Scambos, 2008; Azzoni et al., 2017; 

Phillips et al., 2017). Few of these studies investigated the structural evolution and surface change 

of debris-covered glaciers; in part due to the visible reduction of surface features (e.g. Fushimi, 

1977; Hambrey et al., 2008; Gibson et al., 2017b). Debris-covered glacier dynamics and response to 

climate amelioration are therefore limited but are required to aid our understanding of both past 

and future response, patterns of debris distribution (and therefore ablation patterns) and 

associated landform assemblages.  

Glacier response to changing conditions can be assessed through structural surface expressions of 

the stress and strain regimes within the glacier system. Stress relates to the amount of compression 
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and tension upon the ice whereas strain relates to the amount of deformation resulting from the 

stress. Therefore, glacier structures, which are indicative of the amount of deformation, enable us 

to assess the stress and strain regimes throughout a glacier system. Through analysis of ice 

structures over time, an insight into both long- and short-term change can be derived. Ductile 

structures (e.g. folds and foliation) reveal cumulative strain indicative of the long-term strain history 

developed from the primary stratification of annual snow layers or crevasse traces under high strain 

or through rotation by glacier flow (Benn and Evans, 2010). In comparison, brittle structures, 

including crevasses, typically open due to extensional forces pulling the ice apart once the stress 

and strain exceeds that of the ice elasticity threshold. Therefore they are often confined to the 

surface resulting in clearly identifiable fractures (Cuffey and Paterson, 2010).  

Hambrey and Lawson (2000) provide a detailed review of the structural styles and deformation in 

glaciers. A number of features originate from primary stratification derived from the laying of multi-

annual snowfall and is generally observed in the accumulation zones. The evolution of glacier 

structures are typically derived through a series of deformation regimes, which are common to 

valley glaciers. Figure 2.6 shows the development of a number of commonly identified structural 

features on valley glaciers which originate as primary stratification in the accumulation zones and 

get reworked as they progress through the glacier system as identified at the Haut Glacier d’Arolla, 

Switzerland (Goodsell et al., 2005b). Inhomogeneities within the ice enable easier visual 

identification of a variety of structures, including foliation and folds as the ice moves through 

regions of varying stress and strain regimes. The locations and abundance of such features enable 

us to glean further information regarding historical glacier dynamics and further explore how future 

response may develop these features. The structures observed at the Haut Glacier d’Arolla also 

indicated compression at the snout can reactivate crevasse traces as thrust faults (Figure 2.6). 

Periods of rapid recession are typically associated with less dynamic ice and a reduction in new 

structures forming, whereas increased ice flux and activity is linked to the generation of new 

structures (Hambrey and Lawson, 2000). 

 

This image has been removed by the author for copyright reasons. 

 

Figure 2.6: Schematic diagram of the structural evolution of Haut Glacier d’Arolla, Switzerland. A:  
Flow-units each with its own pattern of primary stratification, separated by structural 
discontinuities. B: Primary stratification gradually folded as it flows into the glacier tongue. Cut by 
open crevasses. C: Continued deformation and formation of longitudinal foliation. Closure and 
rotation of crevasse traces. D: Reactivation of crevasse traces and opening of splaying crevasses. 
Source: Goodsell et al. (2005b). 
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Typical glaciological structures observed on valley glaciers are highlighted in Table 2.1 as identified 

by Goodsell et al. (2005b). One of the most obvious features are crevasses and depending on the 

direction of fracture and shape, the associated stress regimes can be inferred (Figure 2.7). Observed 

as surface fractures, crevasses indicate regions where the critical value has exceeded that of the 

ice.  

 

 

Figure 2.7: Crevasse patterns in a valley glacier and associated stress regimes. A: Effect of shear 
stress exerted by valley walls, B: shear stress and extending flow, C: shear stress and compressive 
flow. Source: Benn and Evans (2010); adapted from Nye (1952). Reproduced with permission of The 
Licensor through PLSclear. 

 

Ogives are common features on mountainous valley glaciers with icefalls and found on the debris-

covered Khumbu glacier, which has an iconic icefall (Hambrey et al., 2008). Two types of ogives 

have been identified in the literature: wave ogives and Forbes bands. Wave ogives are surface 

undulations often found at the base of icefalls resulting from a combination of differential ablation 

and plastic deformation occurring throughout the icefall (Nye, 1958; Goodsell et al., 2002). The 

wave indicates the passage of thicker ice through an icefall in winter and a trough in summer, 

representing one year’s movement through the ice fall. In comparison, Forbes bands are thought 

to represent bands of dirty and clean ice each representing a year’s flow through the icefall. The 

colour variations between light and dark bands has been highly debated with theories suggesting 

that surface debris accumulating in wave troughs (King and Lewis, 1961; Atherton, 1963) or dark 

bands represent debris-rich englacial ice (Leighton, 1951). Further suggestions included variations 

in ice type with light bands consisting of bubble-rich white ice and the darker bands of coarse, 

bubble free ice (Fisher, 1962; Goodsell et al., 2002), or the intensity of foliation within the ogives 

leading to differential weathering (Goodsell et al., 2002). However, band ogives on the Mer de Glace 

were found to have similar surface mass balances on both the light and dark bands contrary to the 

dark bands having ~40% reduced albedo and thus disputes theories of the genesis of band ogives 

based on the assumption of strong ice ablation contrasts between light and dark bands (Vincent et 
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al., 2018). Thus, the formation mechanism of ogives is still highly disputed and the potential 

importance in the development of surface features lower in the glacier systems unknown.  

Structural glaciological mapping and surface geomorphological mapping are often based on a 

combination of high-resolution aerial or satellite imagery and field observations (Goodsell et al., 

2005b; Appleby et al., 2010; Azzoni et al., 2017). Aerial and satellite mapping enable glacier-scale 

mapping to be undertaken across large areas, making it easier for some structures to be observed 

(e.g. unconformities and flow unit boundaries). However, other features are difficult to identify on 

images in part due to smaller sizes and fine features (e.g. thrusts) but are much easier to identify in 

the field. Therefore, where possible, many studies combine both mapping of imagery with field 

observations to infer past dynamic glacier regimes on decadal to centennial timescales.  
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Table 2.1: Identification of glaciological and surface structures derived from aerial and field observations from Goodsell et al. (2005b). 

 

 

 

This table has been removed by the author for copyright reasons.  
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2.5. Debris-covered glacier surface features 
Debris-covered glaciers in a state of negative mass balance commonly exhibit supraglacial ponds 

and ice cliffs resulting from variable ablation rates and undulating topography across the glacier 

surface. Supraglacial ponds are commonly associated with adjacent ice cliffs (Thompson et al., 2016; 

Watson et al., 2017b). However, ice cliffs are also often observed across debris-covered glaciers 

without associated ponds and can occur in high numbers on individual glaciers varying in both size 

and shape (Watson et al., 2016, 2017a). Watson et al. (2017b) observed greater retreat rates of ice 

cliffs where they were adjacent to supraglacial ponds compared to those that were not. They also 

highlighted the need to quantify the spatio-temporal dynamics of supraglacial ponds and ice cliffs 

to fully assess their influence on glacier-scale ablation and thus, glacier dynamics. 

Ice cliffs and supraglacial ponds make a disproportionately large contribution to the overall ablation 

and are an important consideration when assessing the state and future response of debris-covered 

glaciers (Zhang et al., 2011). The presence and influence of both supraglacial ponds and ice cliffs 

are therefore important to assess and understand with regard to glacier-scale dynamics. However, 

when assessing the impact of both ice cliffs and supraglacial ponds on ablation rates, studies are 

limited in quantity and comparability. A number of studies have assessed the proportion of ablation 

at ice cliffs to total glacier ablation through a variety of methods including ablation stakes and the 

development of models (e.g. Sakai et al., 1998; Reid and Brock, 2014), high-resolution DEMs derived 

from Structure-from-Motion (SfM) and satellite data (Immerzeel et al., 2014; Brun et al., 2016, 2018; 

Buri et al., 2016a; Thompson et al., 2016; Watson et al., 2017b), and point models (Steiner et al., 

2015; Buri et al., 2016a). However, only Miles et al. (2018) have so far quantified ablation rates 

associated with supraglacial ponds on total glacier ablation rates. Therefore, the effect ice cliffs and 

supraglacial ponds, and the combined effects, have on both local and glacier-scale ablation rates 

has yet to be fully investigated.  

Studies quantifying ice cliff ablation, summarised in Table 2.2, have shown that ice cliffs contribute 

to the overall debris-covered ablation rates in varying proportions ranging from ~1.2% (Buri et al., 

2016a) to 69% (Sakai et al., 1998). Such variability adds complexity to modelled attempts of debris-

covered glacier evolution and to the debate as to whether ice cliffs can account for the debris-

covered glacier anomaly. Comparability of melt estimates is not always straightforward as methods 

vary. For example Vincent et al (2016) used an ice flux method and accounted for glacier emergence 

whereas Thompson et al. (2016) did not include emergence velocity based on DEM differencing. 

Furthermore, the quantification of ice cliff area varies considerably and is reported as either a 

percentage of debris-covered area, the monitored area or glacier area. The variability could also 

reflect climatic differences between sites and debris properties including thickness (Sakai et al., 

1998; Buri et al., 2016b; Watson et al., 2017b). Despite the high variability, previous studies have 

concluded that ice cliffs drive a disproportionate amount of glacier-wide ablation and further 
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measurements are required to aid our understanding of their impact on glacier and region wide 

ablation in addition to the less constrained influence of supraglacial ponds. The quantification of 

such processes are vital to accurately model glacier-scale ablation patterns and debris-covered 

glacier evolution (Rounce et al., 2015; Rowan et al., 2015; Shea et al., 2015).  

 

Table 2.2: Summary of quantification of ice cliffs to total glacier ablation rates studies highlighting 
the disproportionate influence on ablation.  

Study Study site and 
timing of study 

Method Quantification of ice cliffs to 
ablation 

Sakai et al. 
(1998) 

Lirung Glacier,  
May – October 
1996 

Ablation stakes, point 
scale 

<2% in area, but equates to 69% of 
total ablation of debris covered 
area. 

Sakai et al., 
(2002) 

Lirung Glacier,  
May – October 
1996 

Orientation and 
radiation model 

1.8% area yet 20% total ablation 

Han et al. 
(2010) 

Koxkar Glacier, 
Tuomuer mountain, 
China, 
Aug – Sept 2008 

Physically based 
energy-balance model, 
point scale 

Mean backwasting rate 
7.64 m a−1, or 7.3% of total melt 
runoff 

Juen et al. 
(2014) 

Koxkar Glacier Distributed ablation 
model 

1.7% of debris covered area yet 
2.5% of total glacier ablation.  

Reid and Brock, 
(2014) 

Miage Glacier, Italy 
2010 – 2011  

Ablation stakes and 
model, DEM, point 
scale model 

~7.4% of total ablation but only 
1.3 % of the debris covered area 

Immerzeel et 
al., (2014) 

May – October 
2013 

UAV and SfM 8% in area but equates to 24% 
total melt 

Steiner et al. 
(2015) 

Lirung Glacier, 
Himalaya,  
May – Oct 2013 

Energy-balance point 
model 

May: 3.25 - 8.6 cm d−1 

Oct: 0.18 - 1.34 cm d−1 

Thompson et 
al., (2016) 

Ngozumpa Glacier, 
Himalaya,  
2010 – 2012  

DEM Differencing 5% in area, but equates to 40% 
volume losses 

Brun et al. 
(2016) 

Lirung Glacier, 
Himalaya,  
May – October 
2013 and 2014 

UAV and SfM Six times higher melt than 
estimates of glacier-wide melt 
under debris 

Buri et al., 
(2016b) 

Hindu-Kush-
Karakorum 
Himalaya, Lirung 
Glacier, Himalaya  

Grid based model Two ice cliffs equate to 1.23% of 
the total melt for glacier tongue 
but only 0.09 % area 

Watson et al., 
(2017b) 

Khumbu Glacier, 
Himalaya,  
Nov 2015 – Oct 
2016 

SfM 3D point clouds Winter: 0.3 – 1.49 cm d−1 
Summer: 0.74 – 5.18 cm d−1  

Brun et al., 
(2018) 

Changri Nup 
Glacier, Himalaya; 
2015 – 2017  

UAV and SfM, Pléiades 
DEM 

23-24% ± 5% of total ablation 
observed on the tongue; 3.1 times 
higher than average tongue 
surface 
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2.5.1. Glacial lakes 
In addition to supraglacial ponds and lakes situated on the glacier surface, proglacial and ice-

marginal lakes are commonly observed at the margins of receding debris-covered glaciers (Haeberli 

et al., 2016). Supraglacial ponds are often regarded as the initial phase of glacial lake development 

and have the potential to coalesce and form large proglacial or moraine-dammed lakes (e.g. 

Hambrey et al., 2008; Benn et al., 2012). Such lakes are associated with enhanced glacier mass loss 

(Song et al., 2017; King et al., 2019), accelerated ice flow (King et al., 2018) and potential risk of 

breaching and causing GLOF events with severe consequences (Haritashya et al., 2018). Global 

glacial lake volume has dramatically increased by ~48% between 1990 and 2018 and glacial lakes 

now hold about 0.43 mm of sea level equivalent (Shugar et al., 2020). Understanding supraglacial 

pond initiation and evolution is therefore important to assess the impacts of mass loss and help 

mitigate against future hazards associated with the development of large proglacial lakes and 

contributions to global sea level rise.  

Although the number and size of glacial lakes in the European Alps are relatively small (Paul et al., 

2007; Shugar et al., 2020), the European Alps are considered to be one of the most susceptible 

regions to glacier floods based on the number of sites, with 301 recorded glacial floods having 

occurred in the Alps (Carrivick and Tweed, 2016). As yet, no inventory of glacial lakes for the 

European Alps as a whole has been undertaken and are limited to individual studies (e.g. Strozzi et 

al., 2012; Emmer et al., 2015; Buckel et al., 2018) or global studies (Shugar et al., 2020). Thus, a full 

account of hazards associated with glacial lakes in the European Alps cannot currently be assessed. 

Comparatively, within the Himalaya, approximately 5000 glacial lakes are present having increased 

in area by 14% between 1990 – 2015 (Nie et al., 2017) with 6300 glacial flood events having been 

recorded across central Asia (Carrivick and Tweed, 2016). Due to the recent scientific interest in the 

Himalaya, numerous glacial lake inventories across the region have been completed (Mool et al., 

2001; Zhang et al., 2015; Nie et al., 2017) and highlight the importance of such lakes as both water 

resources and as potential hazards (Immerzeel et al., 2014; Zhang et al., 2015).  

 

2.5.1.1. Supraglacial pond formation  
Supraglacial ponds form on downwasting glaciers with low surface gradients and reduced glacier 

velocity (Table 2.3) (Luckman et al., 2007; Quincey et al., 2007). These factors have been shown to 

influence the distribution of ponds, impede drainage and aid the formation of supraglacial ponds 

(Reynolds, 2000; Quincey et al., 2007; Bolch et al., 2008; Sakai and Fujita, 2010; Salerno et al., 2017). 

Supraglacial ponds generally form on virtually stagnant glacier tongues with velocities of less than 

5 m a−1 with low slope gradients (< 2°) (Table 2.3) (Quincey et al., 2007). Reynolds (2000) identified 

that only small ephemeral ponds were able to form on surface gradients of 6 to 10°, yet were 

prevalent on gradients of 2 to 6°, and were not able to form on gradients above 10°. It is considered 
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that surface gradients between 2 and 10° limit drainage conduits and aid coalescence of meltwater 

and precipitation (Quincey et al., 2007). As the ice melts, supraglacial and englacial drainage 

systems are fragmented, preventing the meltwater escaping efficiently, and enables it to collect in 

surface hollows (Benn et al., 2012). Downwasting is further enhanced via the melt ponds 

transmitting atmospheric energy to the glacier’s interior. Where the pond overlies an englacial 

conduit, surface lowering may intersect them, thereby unroofing them causing them to collapse 

(Miles et al., 2016). As the surface regularly intersects with englacial conduits, water is transported 

to regions where it may be impounded enabling ponds to absorb atmospheric energy and transmit 

it to the underlying glacier ice resulting in further englacial conduit enlargement and collapse 

supporting additional basin evolution and new pond formation (Miles et al., 2016). 

 

Table 2.3: Refined relationship between glacier surface gradients, glacier velocity and supraglacial 
pond development. Reprinted from Quincey et al. (2007) with permission from Elsevier.  

Surface gradient and velocity 
characteristics 

Interpretation 

Gradient <2°, stagnant ice Minimal opportunity for reorganisation of drainage conduits, 
promoting large scale lake development 

Gradient <2°, measurable flow Large lake likely but with a potential for drainage through the 
reorganisation of drainage conduits through flow 

Gradient >2°, stagnant ice No opportunity for reorganisation of drainage conduits through flow, 
but steeper hydraulic gradient aids drainage and lake development is 
unlikely 

Gradient >2°, measurable flow Opportunity for reorganisation of drainage conduits through flow and 
steeper hydraulic gradient aids drainage, resulting in most efficient 
drainage conditions so that lake development is least likely 

 

Pond formation tends, therefore, to be focussed in regions with low slope gradient, low ice velocity, 

with negative mass balance, impeded drainage and hollows developed from either differential 

ablation or englacial conduit collapse. Kirkbride (1993) observed ponds developing upstream of the 

terminus where roof collapse exposed englacial conduits, thus the location of ponds was linked to 

the internal drainage system. Ponds have been observed in higher densities near confluences 

thought to be associated with the closure of conduits and transverse compression (Kraaijenbrink et 

al., 2016b). Blachut and Ballantyne (1976) suggested that ponds were defined by the underlying 

subsurface topography. Similar suggestions have been put forward for the formation of supraglacial 

ponds on the Greenland Ice Sheet (GrIS) resulting in fairly stable locations of such ponds, which 

repeatedly drain and reform (Yang et al., 2015). The locations of pond formation are still not well 

constrained and could help predict and mitigate against hazards associated with the development 

of large proglacial lakes. Thus, the monitoring and identification of additional controls on 

supraglacial pond formation are required.  
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2.5.1.2. Supraglacial pond evolution 
Supraglacial water bodies typically grow through coalescence of multiple smaller ponds into larger 

supraglacial lakes via thermo-erosional notching, and calving of associated ice cliffs (Benn et al., 

2001). Analysis of four glaciers in the Khumbu region led Hambrey et al. (2008) to identify three key 

stages of lake evolution starting with: (1) supraglacial pond formation associated with low slope 

gradients and efficient englacial drainage, (2) lake formation, and (3) expansion including calving at 

a terminal cliff resulting in final drainage through the breaching of a moraine dam. Measurements 

of small and growing ponds and lakes are typically lacking and are required to provide a better 

understanding of which ponds are likely to evolve into potentially dangerous lakes (Cook and 

Quincey, 2015; Watson et al., 2016).  

The evolution of supraglacial ponds differs greatly, even if their starting morphology is the same 

(Cook and Quincey, 2015). Cook and Quincey (2015) undertook a global analysis of glacial lake area, 

depth and volume measurements and concluded that the relationships between area and volume 

are not linearly correlated and there is a need to assess glacial lakes by geomorphological context, 

including supraglacial ponds, supraglacial lakes, moraine dammed lakes, and ice-damned lakes. 

However, Cook and Quincey (2015) noted a lack of bathymetric data sets for small supraglacial 

ponds. Watson et al. (2018b) identified that this lack of data in global assessments disregards the 

importance of expansion at depth with potential implications for volumetric calculations and water 

storage budgets. An additional 24 ponds, of which 20 were <5,000 m2 on two glaciers in the Everest 

region, were incorporated into Cook and Quincey’s (2015) area-volume relationship. This additional 

data supported the relationships previously derived from predominantly proglacial lakes and are 

also applicable to small ponds. However, this relationship is currently limited to data from the 

Himalaya and an improved global dataset would help further constrain these relationships.  

Supraglacial ponds predominantly expand horizontally in area, which is attributed to the dominant 

influence of subaerial ice loss via calving, compared to subaqueous processes (Sakai et al., 2003; 

Röhl, 2008; Vincent et al., 2010; Cook and Quincey, 2015). Yet, subaqueous processes such as 

thermal undercutting, are thought to be a pivotal component leading to ice cliff calving events 

(Benn et al., 2001). Sakai et al. (2009) identified fetch (defined as the maximum lake length along 

the axis of glacier flow, which the wind blows in a given direction) as a primary control on lake 

evolution through calving due to the effects of the wind driven, warm surface water. Once the fetch 

exceeds 20 – 30 m with water temperatures of 2 – 3°C, subaqueous thermal undercutting can occur 

initiating calving (Sakai et al., 2009). Thus, Röhl (2006) concluded that subaqueous melt was also 

partly controlled by circulation and cliff geometry.  

Drainage of the ponded meltwater can occur once a hydrological route is established by overspill 

resulting in constant drainage maintaining a consistent water level, or through contact with the 

englacial drainage system. This could result in fairly rapid drainage over a number of hours or days, 
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or through a dramatic and catastrophic event such as moraine or ice dam breach resulting in a 

potentially catastrophic GLOF. The probability of drainage through englacial drainage system 

therefore increases as the lake grows (Benn et al., 2001).  

Many of the observations regarding the expansion of ponds have come from a combination of 

historical maps and satellite imagery along with in situ measurements covering multi-decadal time 

scales. As such, the development of individual small ponds amalgamating and forming one large 

lake can take several decades to reach full development (Watanabe et al., 1994). For example, the 

Imja Glacier Lake, Khumbu Himal originated as 5 small lakes in the 1950s and formed a single lake 

by 1975 (Watanabe et al., 1994). Similarly, glacial lake Tsho Rolpa, located between the Langtang 

and Everest mountain ranges has now developed into a 1.6 km2 dangerous lake that began as a 

group of individual supraglacial ponds in the 1950s (Mool et al., 2011). In the Cordillera Blanca, Peru, 

this process of coalescence was observed over a period of less than 10 years (Reynolds, 2000) and 

highlights the ability of glacial lakes to undergo substantial expansion over relatively short periods. 

Watson et al. (2016) and Miles et al. (2017b) also highlight the variability of supraglacial ponds over 

seasonal and interannual timescales, partially relating to the monsoon in the Himalaya, yet ~40% 

of ponds exist for multiple years. Therefore, although some lakes may take decades to develop into 

a large potentially hazardous supraglacial lakes, even relatively short monitoring periods provide 

essential information regarding locality and persistence to aid our understanding of the processes 

and influences on glacier behaviour.  

 

2.5.2. Ice cliffs 
Ice cliffs are areas of exposed ice that serve as a further source of enhanced ablation in addition to 

supraglacial ponds and, therefore, also require monitoring and further assessment to understand 

their role in glacier-scale ablation dynamics. Ice cliffs have often been identified in association with 

ponds and lakes suggesting they play an important role early in the phases of debris-covered glacier 

evolution (Sakai et al., 1998; Richardson and Reynolds, 2000; Immerzeel et al., 2014; Miles et al., 

2016). As supraglacial ponds and lakes evolve, the sides have been observed to steepen, gradually 

forming ice cliffs surrounding the lake, enhanced by patchy debris cover and differential ablation 

(Diolaiuti et al., 2005).  

2.5.2.1. Ice cliff formation and evolution 
Debris slope slumping, sliding of debris from steep slopes, calving and englacial conduit collapse 

are considered to play important roles in ice cliff formation (Kirkbride, 1993; Benn et al., 2001, 2012; 

Reid and Brock, 2014), yet ice cliff genesis and understanding of the processes remain limited (Mölg 

et al., 2020). Mölg et al. (2020) identified that three quarters of all ice cliffs over a period of 140 

years on the Zmuttgletscher, Switzerland, were located in a region of erosional features resulting 

from meltwater stream incision. The remaining cliffs were linked to running water and incision from 
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supraglacial streams leading to the development of high relief zones (Figure 2.8). Such zones were 

then enlarged through ice cliff backwasting. Reid and Brock (2014) identified three sets of processes 

for the formation of bare ice cliffs categorised into M-type, C-type and H-type cliffs. M-type cliffs 

form with steep slopes at either the glacier margin or sides of medial moraines; C-type cliffs form 

from the opening of crevasses, and H-type cliffs, or hydrological cliffs, are caused by the thermal 

erosion and subsequent calving of the side-walls, or roof collapse of englacial conduits. They 

proposed that the evolution of such ice cliffs are related to the initial slope and aspect of the 

surrounding topography, ultimately controlling the incoming energy to the ice cliff and surrounding 

area (Reid and Brock, 2014). 

 

 

Figure 2.8: A: Main elements and succession of zones on a debris-covered glacier. B: Concept of 
medial moraine height evolution down-glacier and over time. Reprinted from Mölg et al. (2020) 
with permission from Elsevier.  
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Multiple studies conducted in the northern hemisphere have concluded that ice cliffs facing in a 

predominantly northerly direction persist for longer whereas south facing cliffs melt out much 

faster (Sakai et al., 2002; Reid and Brock, 2014; Buri et al., 2016b). South facing cliffs receive more 

shortwave radiation at the top of the cliff as the bottom is typically shaded. North facing cliffs, 

however, receive less shortwave radiation and more longwave radiation at the base of the cliff 

resulting in generally larger, steeper and typically debris free north facing cliffs that are generally 

longer lived (Sakai et al., 2002). Sakai et al. (2002) classified the ice cliffs on the Lirung Glacier into 

four categories: decayed, temporary, developed, and stable based on their evolution during the 

observation period. Similarly, they concluded that southeast facing ice cliffs were inherently 

unstable in comparison to north-facing cliffs. Steiner et al. (2015) further suggested that increased 

melt observed on sloping cliffs could be a result of a number of factors; the low albedo of the ice 

cliff with fine debris entrained, exposure to high levels of solar radiation, or high longwave radiation 

emitted from surrounding debris, including debris cones. As ice cliffs steepen and exceed a slope 

angle of 38 – 40° debris will no longer be supported and will slide off (Röhl, 2008; Reid and Brock, 

2014), exposing bare and dirty ice altering surface albedo further enhancing ablation rates. Han et 

al. (2010) identified shortwave radiation as the most important heat source resulting in ice cliff 

ablation. Shortwave radiation accounted for approximately 76% of the total heat available for melt 

and was found to have stronger influences on the upper portion of the ice cliffs as lower parts were 

generally shaded, resulting in gently sloping ice cliffs (Sakai et al., 2002). Although individual ice 

cliffs have been assessed, data regarding the development and evolution of ice cliffs and the roles 

they have in debris-covered glacier dynamics in combination with that of supraglacial ponds are 

lacking. Thus, constraint on the formation mechanism and rate of evolution require further 

quantification to aid models of debris-covered glacier evolution.  

 

2.6. Commonly used techniques to assess debris-covered glaciers 
Remote sensing has been utilised routinely for glacier change studies (e.g. Nuimura et al., 2012; 

Berthier et al., 2014) and surface velocity assessment (Scherler et al., 2011). In situ data are often 

lacking for debris-covered glaciers due to inaccessibility and logistical issues (Bolch et al., 2012; 

Gardelle et al., 2013). Therefore, methods to assess glacier change in remote areas, and over wider 

temporal and spatial ranges are often utilised. The geodetic method, based on the differencing of 

multi-temporal DEMs, enables glacier-wide and region-wide data extraction of glacier mass 

balances in remote areas (e.g. Bamber and Rivera, 2007; Howat et al., 2014; Brun et al., 2017). 

Glacier change analysis tends to focus on larger areas over multiple decades, e.g. Khumbu region, 

Nepal (Nuimura et al., 2012); Langtang region, Nepal (Pellicciotti et al., 2015); Mont Blanc, Alps 

(Berthier et al., 2014). Until now there has been a lack of short-term mass balance studies to assess 

contemporary change. The recent increase in the number of high-resolution (<2 m) optical satellites, 
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with far improved repeatability and stereo data collection (e.g. WorldView, GeoEye, IKONOS, SPOT 

and Pleiades), has facilitated repeat multi-temporal glacier assessments (e.g. Nie et al., 2017). In 

particular, SPOT6/7 acquire imagery at 1.5 m panchromatic resolution, while Pleiades 1A/B operate 

at 0.5 m resolution, which aids the extraction of high-resolution topographic data on a repeat basis. 

Both sets of satellites are phased on the same orbit and are consequently capable of collecting 

multi-angle imagery in a single pass applicable for accurate 3D reconstructions, compared to 

satellites with repeat visits with 6 – 7-day gaps, which can result in reduced DEM accuracy due to 

elevation change occurring between the data acquisition dates.  

Analysis of supraglacial ponds and ice cliffs via remote sensing requires high-resolution imagery; 

Watson et al. (2018a) suggested that medium-resolution data (10 – 30 m) is often still too coarse 

to accurately detect and map smaller ponds. Mapping is often carried out either manually (e.g. 

Zhang et al., 2015), through semi-automated approaches utilising multi-spectral imagery and band 

ratios (e.g. Huggel et al., 2002; Gardelle et al., 2011; Nie et al., 2013), or through the use of object 

based image analysis (OBIA) (e.g. Robson et al., 2015; Kraaijenbrink et al., 2016b) to aid 

classification and mapping. Mapping of ice cliffs has recently developed with the use of unmanned 

aerial vehicles (UAVs) and automated techniques (Immerzeel et al., 2014; Kneib et al., 2021). 

However, such techniques often limit the ability to assess vertical backwasting of ice cliffs and a 

move towards 3D mapping of ice cliffs to asses morphology and evolution has developed (e.g. Brun 

et al., 2016; Watson et al., 2017b).  

The combination of in situ data to assess localised processes and the ability to assess glacier-scale 

evolution through field visits and remote sensing enables a holistic approach to assess debris-

covered glacier evolution. Furthermore, it enables assessment of both long-term change from 

historical remotely sensed data, and contemporary processes, which can be empirically detailed.  

 

2.7. Research gaps 
Debris-covered glacier response to climatic variability remains poorly understood because of the 

complex feedbacks between climate, mass balance, velocity, change in debris cover and surface 

features (ice cliffs and ponds) (e.g. Rowan et al., 2015; Dehecq et al., 2019). Studies that integrate 

observations of these elements over annual, decadal and centennial timescales, and across the full 

glacier extent can help to unpick some of these complexities and aid our understanding of debris-

covered glacier response to climatic change in high-mountain regions.  

At present there are few studies that map debris-covered glacier surfaces to assess long-term 

evolution and use the structural pattern to infer past dynamic behaviour including surface 

structures, development of debris cover, supraglacial ponds and ice cliffs over temporal scales 

(Goodsell et al., 2005b; Gibson et al., 2017b; Azzoni et al., 2018). Research is needed to assess 
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glacier surface change using historical imagery and data that can be difficult to access for remote 

regions. This will provide identification of long-term evolutionary processes and pre-conditions for 

the development of surface features.  

A second research gap is the dynamics of debris-covered glaciers through assessment of glacier 

surface elevation change and surface velocity. Despite a wealth of research having been undertaken 

regarding Himalayan glacier dynamics (e.g. Pellicciotti et al., 2015; Brun et al., 2017), recent change 

has not been assessed in the Alps to the same extent. 

Thirdly, little research has been undertaken to assess simultaneous evolution and implications to 

glacier-scale ablation of supraglacial ponds and ice cliffs. The majority of studies have focused on 

either supraglacial ponds or ice cliff contributions to melt rates and only Miles et al.(2018) has 

previously quantified the contribution of supraglacial ponds to glacier-scale ablation.  

Moreover, a large majority of the research regarding debris-covered glaciers has been derived from 

HMA. Despite the increase of debris cover on alpine glaciers having been documented (e.g. Deline, 

2005; Mölg et al., 2019), it has not been adequately assessed in terms of its impact on glacier 

evolution.  

 

2.8. Summary 
This review has discussed debris-covered glacier dynamics and evolution as documented in the 

literature. Climatic warming is expected to continue in the future and thus it is essential to assess 

and accurately predict glacier evolution and the impacts on runoff and water resources. Despite a 

recent surge of research quantifying debris-covered glacier response to climate, a number of 

research gaps remain, which require further constraint for inclusion in global glacier models. 

Specifically, this research aims to clarify some of these research gaps with respect to investigating 

the surface evolution, debris-covered glacier dynamics and the combined impacts of supraglacial 

ponds and ice cliffs at Miage Glacier, European Alps and Hinang Glacier, Nepalese Himalaya.  
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Chapter 3 : Study sites 
3.1. Introduction and rationale for study site selection 
This chapter will discuss the regional settings and research that has previously been carried out on 

the two study glaciers and surrounding areas assessed in this thesis and will outline the rationale 

behind the selection of these regions. This project initially investigates debris-covered glacier 

dynamics at Miage Glacier in the European Alps. Miage Glacier was specifically chosen as it is the 

largest debris-covered glacier in the Alps, and because it exhibits supraglacial ponds, an ice-

marginal lake and proglacial lakes, and ice cliffs. Furthermore, Miage Glacier is easily accessible for 

repeat surveys with road access enabling equipment to be carried to the study sites (Figure 3.1). 

Thus, a wealth of data was collected at Miage Glacier and enabled testing and improvements to be 

made to protocols prior to fieldwork being undertaken at the second site, Hinang Glacier.  

 

 

Figure 3.1: A: Location of the Mont Blanc massif within the European Alps with Europe DEM for 
background. B: Miage Glacier looking up the valley towards Bionnassay Glacier at the back, 
highlighting the northern and southern lobes and Lake Miage. Photo credit: S. Nappa, (2009). 

 

Hinang Glacier is located in the Manaslu region of the Himalaya (Figure 3.2), a region with limited 

previous glaciological research. Hinang Glacier is heavily debris-covered with supraglacial ponds 

and ice cliffs. The glacier was more difficult to access and took six days of trekking to reach the site; 

therefore, the opportunity for equipment to be deployed was limited. The general character of 

glaciers in the European Alps and Himalaya and the specific study glaciers will now be discussed in 

turn.  
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Figure 3.2: A: Location of Manaslu conservation area within Nepal situated between the Annapurna 
conservation area to the west and Langtang national park to the east. B: Hinang Glacier highlighting 
the undulating surface topography with numerous ice cliffs, taken September 2019. 

 

 

3.2. European Alps 
The primary location for data collection and research focus was the European Alps, which forms 

the focus of three data chapters (Chapters 4 – 6). The accessibility of the region means that Alpine 

glaciers are well studied, yet there are still numerous research gaps in the literature regarding the 

evolution of debris-covered glaciers as previously discussed (Section 2.7. Research gaps).  

3.2.1. Regional and climatic setting 
The European Alps mountain range extends 1,200 km from France in the west to Slovenia in the 

east, across eight countries. The highest peak, Mont Blanc/Monte Bianco, reaches 4809 m on the 

French–Italian border. The location of the Alps, situated across the centre of the continent with a 

large range in elevation, means that the climate is highly variable across the range and 

predominantly influenced by topography. Since the end of the nineteenth century, temperatures 

in the European Alps have increased by c.2°C, more than twice that of the average warming in the 

northern hemisphere (European Environment Agency, 2009). Temperatures have continued to 

increase since the 1990s by +1.46°C over the 30–year period, consistent with a negligible increase 

in snowfall (Figure 3.3). This has driven an increase in the rate of glacier mass loss (Vincent et al., 

2017). The European Alps has a total of 2089 km2 of glacierised area (derived from RGI6.0), much 

of which has been closely monitored by various programmes such as the World Glacier Monitoring 

Service (WGMS). 
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Figure 3.3: ERA5 climate data for Miage Glacier from 1990 – 2020 showing daily average 
temperature (top), and amount of snowfall (bottom). Data from www.meteoblue.com, (Hersbach 
et al., 2018). 

 

3.2.2. Mont Blanc massif 
The Mont Blanc massif is one of the most heavily glacierised areas within the European Alps (Deline 

et al., 2012). Data from the RGI6.0 Sentinel-2 analysis (RGI Consortium, 2017; Scherler et al., 2018) 

indicates supraglacial debris cover in the European Alps comprises ~28 % of the total glacierised 

area, of which 28 % is located within the Mont Blanc massif (Figure 3.4). Miage Glacier represents 

9.7% of the debris-covered area within the Mont Blanc massif. In comparison to other Alpine 

massifs, glacier margins in the Mont Blanc region have undergone increased retreat in the last four 

decades with enhanced retreat during the 2000s coinciding with increased supraglacial debris cover 

brought about by increased rockfall frequency (Deline et al., 2012). With increasing debris cover 

(Deline, 2005), glacial lakes including supraglacial ponds are likely to become increasingly important 

for both ablation and water storage in the Alps (Gobiet et al., 2014). The debris-covered Miage 

Glacier is unusual in terms of its ‘Himalayan-type’ development in the Alps and is therefore, a key 

site to study the evolution of debris-covered glaciers with the presence of glacial lakes in a relatively 

accessible region in comparison to the Manaslu glaciers. 
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Figure 3.4: A: Glacierised regions of the European Alps; red box indicates the Mont Blanc massif as 
shown in B. Background shows DEM of Europe. B: Glaciers of the Mont Blanc massif showing extent 
of debris-covered glaciers and main glaciers based on RGI6.0 data with 2018 Planet satellite imagery 
as background.  

 

3.2.3. Miage Glacier 
Miage Glacier is the largest debris-covered glaciers in the Alps and lies to the southwest side of 

Mont Blanc (334170 E, 5077677 N UTM 32N) in the Italian Alps (Figure 3.5) constituting a ~5 km 

long debris-covered tongue, with an overall area of 11 km2, and debris cover extending from an 

elevation of ~2400 m down to ~1775 m (Mihalcea et al., 2008; Shaw et al., 2016). The glacier is fed 

from four steep tributaries including the Mont Blanc Glacier (~2420 – 4100 m), Dome Glacier (~2500 

– 3900 m), Bionnassay Glacier (~2800 – 3900 m) and Tête Carrée Glacier (~2500 – 3000 m) (Shaw 

et al., 2016) in addition to multiple smaller glaciers, including Glacier du Col Infranchissable, Col du 

Miage, Dômes de Miage and Aiguilles de Tré-la-tête. The glacier flows southeast within the confines 

of the valley and enters Val Veny where it bends around c.90°and flows north-eastwards where it 

splits into multiple lobes (Shaw et al., 2016). Thomson et al. (2000) noted the gentle slope of the 

glacier tongue with a gradient of ~5° covering a deeply incised trough. The glacier snout divides into 

three terminal lobes; the northern, central and southern lobes, covered in debris arising from two 

medial moraines transporting debris to the snout with a steeper slope (~11°). Ice thickness derived 

by the RGI6.0 analysis (Farinotti et al., 2019) shows the thickest ice (~193 m) is located in the central 

valley section of the glacier with thinner ice located in the terminal lobes (Figure 3.6). Runoff from 

Miage Glacier flows into the Dora di Veny river, which joins the Po river and is the longest river in 

Italy.  
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Figure 3.5: Location of Miage Glacier and tributary glaciers located on the southwest flank of Mont 
Blanc in the Italian Alps and debris cover from the RGI6.0 Sentinel analysis (Scherler et al., 2018) 
with deposits from rockfall events in 1945 and 1988 and the 2015 TerraItaly orthophoto as 
background. Projection in UTM Zone 32N.  
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Figure 3.6: Ice thickness of Miage Glacier as derived from the RGI6.0 data (Farinotti et al., 2019). 
Background consists of Planet data, 2018.  

 

The steep mountain sides surrounding Miage Glacier permit frequent rockfall and avalanche events, 

delivering debris directly to the glacier surface, which over time becomes concentrated on the 

lower ablation area. Shaw et al. (2016) classified the glacier as having ~4.5 km2 of continuous debris 

cover with 4.6 km2 of ‘clean’ ice. The angular, coarse debris varies in thickness from an average of 

5 – 20 cm on the glacier tongue to more than 1 m thick ~0.5 km upglacier from the terminal lobes, 

consisting of gneiss, schist and granite (Thomson et al., 2000; Shaw et al., 2016). Deline (2005) 

suggests that the presence of the thick debris cover since the Little Ice Age (LIA) termination 

corresponds with Kirkbride’s (2000) model, where periods of positive mass balance and faster ice 

flow transfer debris to the terminal lobes (‘transport-dominant’), whereas negative mass balance 

and slower flow aid enhanced ablation (‘ablation dominant’) and promotes the debris cover to 

extend upglacier. The LIA, therefore, aided debris cover expansion in the Mont Blanc massif with 

an initial transport-dominant period followed by an ablation-dominant period after 1820. Limited 

debris cover was noted in the frontal area until the 1840s and developed into a continuous cover 

during the LIA (Deline, 2005). Deline (2005) identified six stages in which the continuous debris 

cover seen today developed, starting with discontinuous cover in the frontal region during the last 

decades of the LIA, 1860 – 1880. Between 1880 and 1930 the debris cover is thought to have 

developed into the continuous coverage seen today (Figure 3.7). 
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Figure 3.7: The six stages of debris cover development since 1770. Key: (1) ‘clean’ ice, (2) 
discontinuous debris, (3) continuous debris cover, (4) medial moraine, (5) local rock-avalanche 
deposit. Reprinted from Deline (2005) with permission from Sage. 

 

The near-continuous debris cover, which developed after the LIA termination, has had a profound 

impact on glacier evolution (Deline, 2005). Previous mass balance studies of the Mont Blanc region 

identified a strongly negative trend (−1.04 ± 0.23 m w.e. a−1) based on SPOT5 and Pleiades high-

resolution DEMs from 2003 to 2012 (Berthier et al., 2014). The rate of mass loss between 2003 – 

2012 at Miage Glacier was found to be 19% lower (−0.84 ± 0.22 m w.e. a−1.) than the Mont Blanc 

regional average; this average value includes data from predominantly clean-ice glaciers, such as 

the Tre-la-téte, which experienced higher rates of mass loss (−1.34 ± 0.22 m w.e. a−1; Berthier et al., 

2014).  
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Previous analysis of change by Thomson et al. (2000) based on cartographic and topographic 

surveys between 1913 and 1999 illustrated a striking complexity of glacier evolution over space and 

time. Miage Glacier was found to have thickened overall between 1913 and 1957, equivalent to 

+0.14 m a−1 over the 44-year period, with thickening especially evident on the terminal lobes. From 

1957 to 1967, the glacier thinned by −0.38 m a−1. However, changes across the glacier were 

heterogeneous with most loss over the valley trunk section of the glacier, but a 20 m elevation 

increase of the north terminal lobe. From 1967 to 1975, the terminal lobes then lost over 20 m in 

thickness, but widespread thickening of the valley tongue meant that, overall, the glacier thickened 

on average by +0.23 m a−1. Further overall thickening of 1 m, or +0.04 m a−1, occurred between 

1975 and 1999, but this time with the thickening focussed on the terminal lobes, whereas 

decreasing thickness was observed further up-glacier. Diolaiuti et al. (2009) also identified a period 

of positive mass gain between 1975 and 1991, which was followed by a period of substantial mass 

loss between 1991 and 2003. However, the presence of glacial lakes or ice cliffs were not reported 

within either of these previous studies and may have an important, yet under-appreciated, role in 

influencing the mass balance.  

Further studies have investigated meteorological influences with regard to debris cover. Mihalcea 

et al. (2007) found strong, positive correlation between surface temperature and debris thickness 

over areas of continuous debris. Weaker correlations were found on partially debris-covered ice, 

including regions of ice cliffs and crevasses highlighting the influence of varying thicknesses of 

debris cover on surface temperature. However, Shaw et al. (2016) found that air temperature was 

also highly dependent on elevation, although local temperature depressions occurred in relation to 

areas of thin or patchy debris cover. Reid and Brock (2014) found that ice cliffs on Miage Glacier 

accounted for only 1% of the debris covered area but 7.4% of the total ablation. They concluded 

that cliff slope and albedo was more important for ablation than enhanced longwave incidence or 

reduced turbulent fluxes derived from point-based models of five ice cliffs.  

A large ice-marginal lake, known as Lake Miage, is located on the south-western margin of the 

glacier as it bends and flows into Val Veny (Figure 3.5, Figure 3.8). Lake Miage has been the focus 

of a number of studies at the glacier (e.g. Deline et al., 2004; Conforti et al., 2005; Diolaiuti et al., 

2005; Masetti et al., 2010). The lake can be observed in early aerial imagery from 1936. A 

bathymetric survey of Lake Miage in 2003 observed little change in water depth since 1953 and 

indicated that the lake had two basins separated by a submerged moraine adjacent to an ice cliff 

up to 35 m in height above the water surface (Diolaiuti et al., 2005).  
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Figure 3.8: A: View upglacier with the proglacial lake in the foreground and Lake Miage behind in 
July 2017. B: View east over Lake Miage. 

 

A lake drainage event in September 2004 demonstrated that the bathymetry of the drained lake 

bed was different to that previously detected. It had a smoother topography than the undulating 

and peaky morphology indicated by the earlier bathymetric survey (Masetti et al., 2010). The lake 

has been recorded to have naturally drained at least 16 times during the twentieth century (Figure 

3.9) with the last reported event occurring in 2018 (Stefaniak et al., 2021). However, none of these 

drainage events were catastrophic flood events, as the lake drained gradually over a period of a 

few days under the glacier tongue, attributed to the enlargement of crevasses (Deline et al., 2004). 

Additional analysis of the ice cliffs surrounding Lake Miage by Diolaiuti et al. (2005) identified four 

distinct zones of calving on the predominantly south-facing cliff. The development of deep melt 

notches at the waterline at the eastern end were considered the primary cause of calving. However, 

at the western part, calving events were initiated by the opening of cliff top crevasses, which 

propagate and result in toppling failure. They suggested differential ablation across the ice cliff 

surface created an irregular ice cliff geometry resulting in these distinct calving zones.  

 

 

A B 
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Figure 3.9: Timeline of drainage events classified as per information from previous studies. Red – 
complete drainage, Yellow – partial drainage resulting in multiple basins, Blue – no information on 
level of drainage provided.  

 

Analysis of the hydrological system by Fyffe et al. (2019) demonstrated that the thick supraglacial 

debris cover on the lower glacier resulted in smaller supraglacial streams, lower dye trace velocities 

and lower dye recovery rates compared to those further upglacier where debris cover is thinner. 

This resulted in a less efficient subglacial drainage network on the lower, continuously debris-

covered region. Upglacier, within the confined valley section, fast, efficient moulins and associated 

drainage networks are present (Fyffe et al., 2019). The formation of one moulin located at ~2340 m 

elevation was observed to have developed from the drainage of a supraglacial pond, highlighting 

the influence of pond development and drainage on hydrological networks (Fyffe et al., 2019). It is 

therefore expected that supraglacial ponds are more likely to develop in the down-glacier reaches 

of the glacier where thicker debris cover is present, resulting in a less efficient drainage system.  

The presence of a continuous debris cover since the LIA has therefore altered the glacier response 

to ongoing climatic change. The resulting shape and morphology of Miage Glacier has often been 

compared to the large debris-covered glaciers seen in the Himalaya (Diolaiuti et al., 2009). The 

selection of Miage Glacier as a study site enabled a multi-annual approach with multiple visits to 

assess ongoing processes of debris-covered glaciers and supraglacial pond development. Miage 

Glacier has been the subject of a wide range of glaciological studies including mass balance 

(Smiraglia et al., 2000; Thomson et al., 2000; Berthier et al., 2014), surface energy balance (Reid 

and Brock, 2010; Fyffe et al., 2014), near surface meteorology (Brock et al., 2010; Shaw et al., 2016), 

hydrology (Fyffe et al., 2019), debris evolution (Deline, 2005; Stewart et al., 2021), variable ablation 

patterns and debris redistribution (Fyffe et al., 2020), geomorphological evolution (Westoby et al., 

2020), mass loss processes including ice cliffs (Diolaiuti et al., 2005; Reid and Brock, 2014), and the 

presence of glacial lakes and associated processes (Tinti et al., 1999; Diolaiuti et al., 2005, 2006). 

However, comparatively little research has been undertaken on the glacier dynamics at Miage 

Glacier in the last decade with limited documentation of supraglacial pond and ice cliff presence. 

The wealth of pre-existing research on Miage Glacier indicates how important this example is for 
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studying debris-covered glacier dynamics in response to the changing climate and enables a 

comprehensive understanding of glacier dynamics. To aid this research, field visits were undertaken 

to Miage Glacier in June – July 2017 and 2018.  

 

3.3. Himalaya 
The second study site for this project was located in the Manaslu region of the Nepalese Himalaya. 

The Himalaya represent the largest concentration of glacier ice outside of the poles and has gained 

the name ‘the third pole’ (Qiu, 2008; Yao et al., 2012a). Debris-covered glaciers only equate to 17% 

of the total glacierised region in the Himalaya as derived from the RGI6.0 data (Scherler et al., 2018) 

(Figure 3.10). However, the increasing abundance of glacial lakes and ice cliffs observed across the 

range (Nie et al., 2013) highlight the potential impacts on water resources, which >1.9 billion people 

rely on (Immerzeel et al., 2019). 

 

 

Figure 3.10: A: Glaciers and debris cover across the Himalaya based on the RGI6.0 datasets, boxed 
area refers to the Manaslu conservation area as shown in B. B: Glaciers and debris cover in the 
Manaslu region (shown by black outline) with glaciers of interest noted. Background shows DEM 
for Manaslu region, Nepal.  

 

3.3.1. Regional and climatic setting 
The Himalayan range extends for ~2,400 km within the Hindu Kush-Himalayan mountain range. This 

extends from Afghanistan in the west across 3,500 km to Myanmar in the east and includes the 

world’s highest mountains in excess of 7,000 m (Rana, 2003; Mool et al., 2011). As such, the 
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mountains act as the headwaters of 10 of the largest rivers in Asia providing >1.9 billion people with 

water (Immerzeel et al., 2019).  

The central and eastern Himalayan climate is dominated by the South Asian summer monsoon and 

mid-latitude westerlies, which changes to a south-easterly direction during the monsoon  

(Bookhagen and Burbank, 2010; Immerzeel et al., 2010). Summer monsoon precipitation between 

June and September results in many glaciers in the region being of ‘summer accumulation type’ 

(Bookhagen and Burbank, 2010; Bolch et al., 2012). Despite this, positive temperatures during the 

summer months result in concurrent mass loss (Bolch et al., 2012). Temperatures in the Manaslu 

region have increased by +0.45°C since 1990 (Figure 3.11).  

 

Figure 3.11: ERA5 climate data for Hinang Glacier from 1990 – 2020 showing daily average 
temperature (top), and amount of snowfall (bottom). Note heavy snowfall in 2015. Data from 
www.meteoblue.com. 

 

The most recent advance in glacier extent across the Himalaya was associated with the LIA (c.1300 

– 1850) (Rowan, 2017). Since then, glaciers have largely been in a state of retreat with the exception 

of the Karakoram anomaly and variations between clean-ice glaciers and debris-covered glaciers 

(Gardelle et al., 2012, 2013; Pellicciotti et al., 2015). The rate of retreat has now exceeded that 

which can be attributed to the monsoon variability (Mölg et al., 2014). An erroneous report 

published by the IPCC (2007) reported that Himalayan glaciers could disappear by 2035, rather than 

the correct date, which should have read as 2350. Although this has since been widely refuted 

(Cogley et al., 2010; Cogley, 2011), it exposed major gaps in our understanding of glacier dynamics 

in this region (Bolch et al., 2012). This inaccuracy fuelled a surge in Himalayan glacier research with 



Page | 41  
 

a strong focus on debris-covered glaciers and has highlighted a number of gaps in the current 

research, which have since instigated a wealth of recent studies on the heavily debris-covered 

glaciers of HMA (e.g. Brun et al., 2017; Dehecq et al., 2019). Despite this, complexities of debris-

covered glacier dynamics mean that future glacier response in this region is highly variable with 

rates of glacier disappearance and volume reduction ranging from 10% of Khumbu Glacier (Rowan 

et al., 2015), to 75% reduction in Langtang catchment by 2088 (Immerzeel et al., 2012) and up to 

83.7% by 2100 in the Dudh Kosi basin depending on various emission scenarios (Shea et al., 2015).  

3.3.2. Manaslu region 
The Manaslu conservation area hosts a number of large, heavily debris-covered glaciers with 

supraglacial ponds and sits to the west of Kathmandu and both the Khumbu Himal region and 

Langtang Valley (Figure 3.2) where a wealth of data observing debris-covered glaciers and 

supraglacial ponds has been obtained in recent years (Benn et al., 2001; Pellicciotti et al., 2015; 

Rowan et al., 2015; Miles et al., 2016). In comparison, the Manaslu region has been widely 

neglected in terms of research with the exception of Thulagi Glacier located on the western side of 

Manaslu, just outside the conservation area, which terminates in the moraine-dammed Thulagi 

Lake, also known locally as Dona Lake, which has grown to ~0.9 km2. Thulagi Lake is considered to 

be one of the most potentially dangerous glacial lakes in the Himalaya (Mool et al., 2011; Haritashya 

et al., 2018).  

The Manaslu region holds ~788 km2 glaciers, which are typically between 0.5 – 1 km in width and 5 

– 15 km in length, with elevation ranges typically between 3000 to >7000 m a.s.l. (Robson et al., 

2015). The glaciers in this region experience the humid, monsoon-driven accumulation 

predominantly in the summer. Over half (52%) of the glaciers in the Manaslu region experienced 

an increase in debris cover between 2001 and 2013 (Robson et al., 2018). The eastern side of the 

Manaslu conservation area is located within the Gorkha district, which was hit by a large earthquake 

in 2015 (Kargel et al., 2016) and evidence is abundant along the Manaslu trekking circuit, including 

evidence of landslide activity.  

 

3.3.3. Hinang Glacier 
Glaciers of the Manaslu region, including Hinang Glacier (Figure 3.12), have only been researched 

within a study regarding glacier change in the Manaslu region by Robson et al. (Robson et al., 2015, 

2018). This glacier will provide a comparison to Miage Glacier to explore local and generic debris-

covered glacier dynamics and evolution.  
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Figure 3.12: Glaciers on the eastern side of Manaslu including Punggen Glacier, Hinang Glacier and 
Himal Chuli Glacier. Background shows Planet data from October 2019.  

 

Hinang Glacier (also referred to as Lanjam Glacier in the RGI/GLIMs inventory) is located to the east 

of Mount Manaslu, the eighth highest mountain in the Nepalese Himalaya (Figure 3.12) and flows 

southeast from Manaslu mountain passing through a narrow valley (Robson et al., 2018). Mount 

Manaslu lies ~230 km west of Mount Everest and exhibits an area with both clean and debris-

covered glaciers. Hinang Glacier is located between ~3350 m to 4600 m a.s.l. and is ~12 km long 

and ~1 km wide, with a maximum ice thickness of ~276 m as derived from the RGI6.0 analysis 

(Farinotti et al., 2019) (Figure 3.13). Hinang Glacier is a debris-covered glacier with evidence of 

supraglacial ponds (Figure 3.14 A). Previous research by Robson et al. (2018) on Hinang Glacier 

showed signs of frontal retreat between 1999 and 2013 along with the northerly lying Punggen 

Glacier, also referred to Punggeon Glacier by Robson et al. (2018). The spelling used here follows 

that published on the Himalayan Map House Manaslu and Tsum Valley map. The terminus of Hinang 
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Glacier underwent substantial stagnation although much of the upper glacier is comparatively 

active. Runoff from Hinang Glacier flows into the Budhi Gandaki river (Figure 3.14 B), which joins 

the Trisuli river followed by the Gandak river before becoming a tributary of the river Ganges and 

is therefore also important to consider for water resource management. The location of Hinang 

Glacier located in the Manaslu region has therefore been selected to provide significant insight 

regarding glacier response to climatic change across the Himalaya, impact on potential water 

resources and future GLOF risk.  
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Figure 3.13: Ice thickness of the easterly flowing Manaslu glaciers, A: Punggen Glacier; B: Hinang Glacier; C: Himal Chuli Glacier, as derived from the RGI6.0 
data. Background shows Landsat satellite data. 
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Figure 3.14: A: Hinang Glacier looking upglacier to the west with a supraglacial pond; B: The Budhi 
Gandaki river in the lower reaches. Photos taken in September 2019. 

  

A B 
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Chapter 4 : Surface evolution of Miage Glacier 
4.1. Introduction 
Glacier response to climatic change is evident through surface structures, which express the stress 

and strain regimes within the glacier system from which historical flow regimes can be derived. 

Thus, past glacier dynamics can be derived using high-resolution historical aerial imagery extending 

our analysis beyond more recent applications using satellite imagery. Understanding the 

development of surface glacier features and the processes involved is required to improve 

predictive models of glacier evolution and future response to climatic change, especially our 

understanding of debris-covered glacier behaviour (Hambrey and Lawson, 2000).  

Although Miage Glacier has been assessed in terms of the development of the debris cover since 

the LIA (Deline, 2005), no structural analysis or assessment of surface evolution has been carried 

out to identify past glacier dynamics and its evolution towards its current state. This component of 

the research contributes to the aims and objective 1 as set out in Section 1.3 to complete glacier 

mapping of surface features on Miage Glacier (1952 – 2018) to assess surface change, structural 

evolution, and flow regimes. Specifically, the objectives of this chapter are: (i) to assess surface 

dynamic changes of Miage Glacier over decadal time scales; and (ii) to assess the development of 

supraglacial ponds and ice cliffs on Miage Glacier. Analysis of surface features utilises historical 

aerial and satellite imagery covering a period from 1952 to 2018. In addition to the structural 

analysis, the surface mapping will assess glacier extent, debris extent, and surface features 

including ice cliff and glacial lake evolution from 1952 – 2018. This chapter will aid understanding 

the dynamic context of the debris-covered Miage Glacier and will form the basis for the line of 

questioning identified throughout Chapters 5 and 6. 

 

4.2. Methods and data accuracy assessment 
4.2.1. Data sources 
Surface mapping and structural glaciological mapping was undertaken through manual digitisation 

of surface structures on Miage Glacier utilising satellite and aerial imagery from 1952 to 2018. 

Historical analysis of Miage Glacier was undertaken using aerial imagery provided by the Institut 

National de l’Information Géographique et Forestière (IGN) covering 1952 – 2006 and satellite 

images dating from 2009 to 2018 (Table 4.1). Images were restricted to the summer ablation season 

(July – September) where clear, ‘cloud-free’ images were available. Images from the same month 

were selected where possible to enable comparison of seasonally variable aspects of the glacier 

geomorphology such as supraglacial ponds and ice cliffs.  

The IGN historical aerial images were mosaicked and orthorectified in Agisoft Photoscan 

Professional Edition with a minimum of six images and six Ground Control Points (GCPs) covering 
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the glacier for each time period enabling export of high-resolution orthorectified images (Evans et 

al., 2017; Midgley and Tonkin, 2017). The orthorectified images were exported at a resolution of 

1 m for consistency with mapping and later satellite images. All images were compared to the 

georeferenced 2015 TerraItaly orthophoto (20 cm resolution) prior to analysis to ensure accuracy 

and consistency. The satellite images from 2009 – 2018 were orthorectified using the RPC models 

provided with the imagery and pansharpened in Erdas Imagine 2016 to improve the colour 

resolution to aid identification of surface features. Alignment with the 2015 TerraItaly image was 

visually assessed to ensure accuracy and consistency. 

Structural analysis and surface mapping was undertaken aiming for one image per decade 

dependent upon the quality and availability of data from 1952 to 2018 (i.e. 1952, 1961, 1979, 1988, 

1996, 2009, and 2018) to assess the surface evolution. Digitisation of structures was completed 

manually in ArcGIS for each of the georeferenced images. For each image, surface features including 

termini position, debris cover, ogives, crevasses, supraglacial streams, glacial lakes, and ice cliffs 

were manually digitised by one analyst and edited on multiple days until no further edits were 

required (e.g. Watson et al., 2017a). Features were identified manually based on colour differences 

between pixels and structure (e.g. areas of slope and exposed ice). Additional imagery was used 

having been mosaicked and orthorectified in Agisoft Photoscan to assess the development of glacial 

lakes only (Table 4.1). For 1993, 2001 and 2004 limited images were available and the overlapping 

coverage was inadequate for mosaicking, therefore individual images for these years were 

georeferenced in ArcGIS.  
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Table 4.1: Registration errors and uncertainty derived from data used. Dates in bold are those which the structural evolution and surface change was 
undertaken. Additional dates were for analysis of glacial lake evolution only. (NB: 1993, 2001 and 2004 georeferenced in ArcMap).  

Data Acquisition 
Dates 

Resolution (m) XYZ error Agisoft 
(m) 

Registration 
error (pixel) 

Uncertainty (m) 

IGN Historical images 27/07/1952 1.00  1.42 5.00 2.46 
IGN Historical images 31/07/1958 1.00  3.88 5.00 2.46 
IGN Historical images 29/08/1961 1.00  0.67 5.00 2.46 
IGN Historical images 12/10/1967 1.00 0.91 5.00 2.46 
IGN Historical images 05/09/1979 1.00  1.46 5.00 2.46 
IGN Historical images 26/09/1983 1.00  0.57 5.00 2.46 
IGN Historical images 26/07/1988 1.00  0.65 5.00 2.46 
SPOT-1 22/07/1990 10.0 - 20.00 10.96 
IGN Historical images 11/08/1993 1.32  - 6.60 2.90 
IGN Historical images 31/07/1996 1.00  2.60 5.00 2.46 
IGN Historical images 01/08/2000 1.00  0.86 5.00 2.46 
IGN Historical images 13/08/2001 1.22  - 6.10 2.76 
IGN Historical images 30/06/2004 0.63  - 3.15 1.89 
IGN Historical images 01/09/2006 1.00 0.61 5.00 2.46 
GeoEye 29/08/2009 0.49  - 0.98 1.12 
Planet 15/07/2010 3.00 - 6.00 3.88 
Planet 06/09/2011 3.00 - 6.00 3.88 
Pleiades  19/08/2012 0.50  - 1.00 1.14 
WorldView 2 10/08/2013 0.50  - 1.00 1.14 
Pleiades 02/10/2014 0.50 - 1.00 1.14 
WorldView 3 14/07/2015 0.30  - 0.60 0.85 
TerraItaly Orthophoto 07/07/2015 0.20  - - - 
SPOT orthophoto 12/10/2016 1.50  - 3.00 2.30 
SPOT orthophoto 13/07/2017 1.50  - 3.00 2.30 
SPOT orthophoto 26/08/2018 1.50  - 3.00 2.30 
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4.2.2. Glacier mapping 
Structural mapping and identification of structures was based on the criteria defined by Goodsell 

et al. (2005b) and included identification of primary stratification, flow unit boundaries, crevasses, 

folds, bedrock outcrops and ogives (Goodsell et al., 2002) (see Table 2.1, Section 2.4.). Additional 

surface mapping of features was undertaken to include glacier extent, debris cover, supraglacial 

ponds, ice cliffs and supraglacial streams. 

Mapping debris-covered glaciers is challenging due to the presence of debris obscuring sub-debris 

features, therefore mapping glacier extent and delineating surface features increases potential 

error (e.g. Paul et al., 2013). Manual mapping is influenced by the image resolution and operator 

ambiguity in both identification and digitisation of surface features (Watson et al., 2017a). To 

minimise errors and reduce uncertainty associated with manual digitisation, all mapping was 

completed by one analyst to ensure consistency. The mapping components were then checked for 

accuracy by revisiting on independent days until no further edits were required. All images were 

registered to a common image (2015 orthophoto) allowing termini position, area and surface 

features to be quantified. The accuracy of mapped components was assessed through repeat 

digitisation methods. For each of the mapped components the methods for identification, mapping 

and error and uncertainty analysis will now be discussed in turn.  

 

4.2.2.1. Crevasses 
Crevasses appear on the historical imagery as either dark lines on the surface in debris-free areas, 

or white lines in debris-covered areas where filled with snow (See Table 2.1; (Goodsell et al., 

2005b)). Crevasses were typically identified as linear features inclusive of both open fractures and 

linear imprints indicative of crevasse traces. Crevasses were clearly visible where debris was absent 

or under a thin layer of debris but were more difficult to visibly identify on the lower glacier under 

a thicker debris cover. Quantification of the total length of crevasses in addition to direction and 

location of crevasses were used to interpret the flow regimes.  

4.2.2.2. Ogives 
Band ogives are classified owing to the repetition of dark and light convex bands in the direction of 

ice flow at the base of icefalls (Goodsell et al., 2002). Ogives can be identified at the base of the 

icefalls emerging from the main tributary glaciers and can be traced downglacier where debris is 

thin enough to observe them. Although the formation mechanism is still not fully understood, the 

proposed theory by Nye (1958) is generally accepted and assumed to be indicative of the passage 

through icefalls in a year reflecting the whiter (winter) layers and darker (summer) layers.  
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4.2.2.3. Glacier extent and termini position 
Identification of the debris-covered glacier extent and termini position was aided by indicators of 

ice presence such as ice cliffs, exposed ice and distinct morphological changes. Glacier extents from 

the RGI 6.0 (RGI Consortium, 2017) were used to aid initial visual assessment, which can be further 

complicated by the presence of snow, especially within the high accumulation zones.  

For each glacier outline, manual digitisation was carried out three times for comparison and 

accuracy was assessed via the standard deviation, ranging from 0.05 to 0.34 km2 (Paul et al., 2013). 

The mean area varied for each year with a maximum of 5% variation. Assessment of the uncertainty 

for termini position was determined based on the square root of the input imagery resolution and 

registration error as in Equation 4.1 (Hall et al., 2003; Silverio and Jaquet, 2005). Registration error 

compared to the 2015 orthophoto was estimated to be <5 pixels for the IGN historical data equating 

to 5 m, and <2 pixels for satellite imagery based upon improved alignment using RPCs ranging from 

1 – 20 m for the 2018 to 1990 data (Table 4.1). This resulted in registration errors ranging from 0.60 

to 20 m and uncertainty values therefore ranged from 0.85 – 10.96 m (Equation 4.1).  

Equation 4.1 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = �[(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1)2 + (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2)2]
+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

4.2.2.4. Debris cover 
For the panchromatic imagery (1952 – 1996) and multispectral satellite imagery (2009 – 2018) 

debris cover was mapped within the glacier extent aided by a basic supervised maximum likelihood 

classification in ArcGIS using debris and snow/ice classes based on approximately ten spectral 

samples for each image, and manually edited. The resulting classification was then manually 

checked and edited where necessary. For the later images in 2017 and 2018, the debris-cover 

extent provided by the RGI 6.0 (Scherler et al., 2018) was used as an initial guide. Due to limited 

ground truth data other than field observations to confirm regions of debris cover, uncertainty was 

applied at an upper boundary of ±5% in accordance with previous studies (e.g. Paul et al., 2013, 

2017; Mölg et al., 2018).  

4.2.2.5. Supraglacial ponds and streams 
Manual mapping of the waterbodies from the IGN aerial imagery was undertaken. Identification of 

waterbodies across the glacier surface were aided by the shape, pixel saturation and colour. 

Supraglacial streams were mapped where traceable based on sinuous surface features cutting 

through the debris cover.  

The presence of water in the satellite imagery between 2009 and 2018 was aided by a Normalized 

Difference Water Index (NDWI) band ratio utilising the near infrared (NIR) and visible green bands 



Page | 51  
 

to identify water on the glacier surface (McFeeters, 1996). The NDWI utilises the visible green and 

NIR bands of the multispectral satellite imagery based on (Equation 4.2). 

NDWI = (Green − NIR) / (Green + NIR)       Equation 4.2 

 

The NDWI resulted in misclassification of some pixels and manual editing and visual identification 

was then undertaken. Values closest to 1 indicated the presence of water and was used to aid 

manual mapping of glacial lakes and streams. Comparisons with the visual RGB imagery enabled 

operator identification to detect and manually edit any erroneous boundaries. In some cases, areas 

identified as exposed ice and ice cliffs were highlighted in the NDWI index and were manually edited 

to delineate pond boundaries and ice cliffs (Figure 4.1).  

Operator bias was assessed on five ponds randomly selected from the study area that were digitised 

independently three times as manual digitisation is likely to be a substantial source of uncertainty. 

The percentage variability for repeatability was <10% with a standard deviation range of 3 to 78 m2. 

Total uncertainty for pond delineations was calculated as equal to the coefficient of variation for 

operator bias as adapted from Steiner et al. (2019) and ranged from 6.5 to 10.4%.  

 

 

Figure 4.1: The use of NDWI to aid mapping of glacial lakes and streams with an example of those 
mapped in 2015.  

 

4.2.2.6. Ice cliffs 
Ice cliffs were manually digitised via visual assessment of exposed ice observed in the debris-

covered region. Ice cliffs were defined as exposed ice inclusive of both clean and dirty regions, 

which were visually assessed. Associations with supraglacial ponds and increased slope angles and 

aspect derived from SPOT derived DEMs (see Chapter 6) aided identification of ice cliffs to the 

surrounding terrain. Ice cliffs were classified as a region with a steep slope angle and exposed ice 

within the debris-covered ablation zone.  
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Uncertainty was assessed on a random sample of five ice cliffs that were selected from each of the 

images and digitised three times to assess operator error. The percentage variability for 

repeatability was <8% with standard deviations ranging from 20.6 to 185 m2; lower variability was 

observed with the higher resolution data and was highest for the lower resolution data, which 

indicates a higher degree of uncertainty. The coefficient of variation ranged from 3.13 to 6.5%. 

 

4.3. Results 
4.3.1. Structural evolution 1952 – 2018 
Miage Glacier underwent structural change between 1952 and 2018 (Table 4.2) and shows complex 

glacier dynamics influenced by the four tributary glaciers, which feed the main glacier trunk and 

determine individual flow unit boundaries. The structural assessment of Miage Glacier from 1952 

to 2018 indicate it has undergone a change from one of an active ice flow regime followed by a 

period of deterioration since 1990s, which has continued until 2018 (Figure 4.2 to Figure 4.3). 

Mapping individual structures observed on the surface enables further detail of the glacier 

dynamics to be derived over the 66-year period. A sub-period from 1990 to 2018 is referred to for 

comparison with Chapter 5 and due to the availability of multi-spectral imagery from this time 

period enables additional variables to be quantified.  
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Figure 4.2: Mapping of structural and surface features from 1952. Background imagery shows the 
orthophoto derived from the 1952 aerial images. The 1945 rockfall was not visible in the imagery.  
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Figure 4.3: Mapping of structural and surface features from 2018. Background shows the SPOT 2018 
satellite imagery used for digitisation of structures.  

 

At the beginning of the observation period in 1952 systematic layering identified as primary 

stratification of snow layers is observed in the high accumulation zones of the tributary glaciers, 

predominantly on Dome Glacier (Figure 4.2). Folding of primary stratification highlighted by 

incorporated dirt and debris is evident at the top of the main tongue of Miage Glacier, downglacier 

of Bionnassay Glacier. The presence of the icefalls on all four tributary glaciers results in distinct 
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ogive bands at the base of the Tête Carrée Glacier, Bionnassay Glacier and Dome Glacier, yet no 

ogives are visible at the base of Mont Blanc Glacier. The icefalls of Tête Carrée Glacier and Dome 

Glacier are approximately 90° to the Miage Glacier valley section and the developed ogives become 

elongated in the direction of flow of the main trunk (SSE). Typical wavelengths of the ogive bands 

(i.e. the distance between two dark ice bands) vary from ~15 m to 100 m; and are most prominent 

downglacier of Bionnassay Glacier. The icefalls on all four of the main tributary glaciers indicate 

intensive multi-directional crevassing including transverse, arcuate and longitudinal overlapping 

crevasse sets. En-echelon crevasses are observed along the glacier margins of the valley tongue, in 

addition to a distinct set of longitudinal crevasses observed at the top of the terminal lobes. Medial 

moraines emanate from the meeting of tributary glaciers, confining ogives and crevasse sets to 

distinct flow units. Deposits from the 1945 rockfall event were not visibly identifiable in the 1952 

imagery and thus are not mapped in Figure 4.2. 

In 1961, despite a reduction in the visibility of ogives from Bionnassay Glacier compared to 1952 

(Figure 4.4), Dome Glacier and Tête Carrée Glacier exhibit clearly visible ogive bands resulting in an 

overall increase in cumulative length (Table 4.2). An increase in crevasse density along the margins 

of the glacier tongue is particularly apparent, consistent with an increase in total crevasse length 

from 31 km in 1952 to 56 km in 1961 (Table 4.2). Evidence of the 1945 rockfall deposit is observed 

on the main trunk of Miage Glacier. 

By 1979, Tête Carrée Glacier exhibited clearly visible ogive bands, while visibility of ogives on 

Bionnassay Glacier, Dome Glacier and Mont Blanc Glacier are much clearer. Crevasse density and 

length also reduced on the glacier surface. Meanwhile, on the high elevations of Mont Blanc Glacier, 

bedrock outcrops are visible with thin snow cover (Table 4.2).  

Additional crevassing on the lower valley section around Lake Miage and above the terminal lobes 

is evident in 1988 (Figure 4.4). Ogives are present at the base of Tête Carrée Glacier and Dome 

Glacier, but visibility is limited. The glacier is observed with increased snow cover in the higher 

elevations potentially accounting for the reduction in ogives, specifically from Bionnassay Glacier.  
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Figure 4.4: Structural mapping from 1952 to 2018. TC - Tête Carrée Glacier, BG – Bionnassay Glacier, 
DG – Dome Glacier, MB – Mont Blanc Glacier.  

 

By 1996 only a limited number of ogives are visible at the base of Tête Carrée Glacier (Figure 4.4). 

Furthermore, Mont Blanc Glacier shows an increase in the size of the bedrock outcrop (Table 4.2).  
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In 2009, crevassing is limited to the southern glacier margin and above the terminal lobes and is 

generally limited to the higher elevations. An increase in the visibility of ogives from Tête Carrée 

Glacier, Bionnassay Glacier and Dome Glacier are also evident. Two exposed ice cliffs upglacier 

towards the confluence of the tributary glaciers are evident with a notable circular shape (Figure 

4.4).  

By 2018, arcuate crevasses on the accumulation zones of the tributary glaciers; Bionnassay Glacier, 

Dome Glacier and Mont Blanc Glacier, suggest a steep ridge resulting in an extensional regime 

(Figure 4.3). Limited visibility of ogives at the base of Tête Carrée Glacier and Dome Glacier with 

typical spacing between the bands reduced since 1952 to ~30 to 55 m. No ogive bands are visible 

from Bionnassay Glacier or Mont Blanc Glacier. Increasing expanse of rock at the base of the Mont 

Blanc Glacier icefall indicates further ice thinning and/or loss of ice through avalanching of ice blocks. 

Limited crevassing is observed on the main valley tongue of Miage Glacier, whilst crevasses at the 

top of the terminal lobes are now classified as ice cliffs due to the increasing expanse of exposed 

ice rather than fractures as previously observed.  

 

Table 4.2: Summary of structures as derived from the mapping in Figure 4.2 to Figure 4.4. 

Date Glacier area  
(km2) 

Debris cover 
(area km2/ % of 
glacier area) 

Crevasses 
(total length km / 
density km/km2) 

Ogives 
(length km / 
density km/km2) 

Bedrock 
outcrop area 
(km2) 

1952 10.2 ± 0.11 4.8 ± 0.24 (47%) 31.70 3.10 4.36 0.43 0.05 
1961 10.5 ± 0.13  5.4 ± 0.27 (51%) 56.01 5.32 7.52 0.71 0.05 
1979 11.1 ± 0.24 4.9 ± 0.24 (44%) 23.37 2.11 6.08 0.55 0.06 
1988 11.4 ± 0.34 4.4 ± 0.22 (40%) 32.87 2.95 4.34 0.39 0.04 
1996 10.7 ± 0.11 4.5 ± 0.22 (42%) 28.82 2.69 3.71 0.35 0.07 
2009 9.6 ± 0.05 4.8 ± 0.24 (50%) 35.35 3.67 4.16 0.43 0.11 
2018 9.3 ± 0.05 4.9 ± 0.25 (52%) 30.02 3.21 2.04 0.22 0.13 

 

 

Quantification of the structures in Table 4.2 indicate an increase in glacier area in the late 1970s 

and 1980s, followed by continued reduction thereafter (Figure 4.5). Debris cover was typically 

observed to increase over the study period such that 52% of the total glacier area was covered with 

supraglacial debris by 2018.  
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Figure 4.5: Glacier extent, crevasse length and ogive length from 1952 – 2018. 

 

 

4.3.2. Surface change 1952 – 2018 
Miage Glacier underwent substantial surface change between 1952 and 2018 (Table 4.2). The 

glacier area decreased by 8 ± 2% between 1952 and 2018 with ~136 ± 4.04 m recession in termini 

extent along the southern lobe. In comparison, the northern lobe receded very little (~15 ± 4.04 m) 

between 1952 and 2018. The reduction in glacier area is noted in the higher elevation accumulation 

zone and where tributary glaciers feed the Miage Glacier valley tongue (Figure 4.2). Debris cover 

varied between 1952 – 1988 but increased between 1988 and 2018 by ~8.5%, with higher 

elevations and tributary glaciers becoming noticeably dirtier. Supraglacial ponds substantially 

increased in number between 1988 to 2018. No supraglacial ponds were observed prior to 1996, 

with the exception of one small pond in 1961 equating to 95 m2, but ponds covered 6,047 m2 by 

2018. The ice-marginal Lake Miage and proglacial Lac Vert are evident since 1952. Because of its 

large size, trends in glacial lake area were driven largely by changes of Lake Miage. Alongside the 

development of lakes and ponds was an increase in ice cliff area from 17,326 m2 to 47,616 m2 

(+175%) between 1952 and 2018. In accordance with an increase in debris cover and reduction in 

glacier extent since the 1990s, the surface of the glacier has become increasingly undulating.  
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Table 4.3: Summary of ice cliff and glacial lakes on from 1952 to 2018. Glacial lakes and pond uncertainty is given at the upper value of 10% and uncertainty 
of ice cliffs at 8%.  

Date Glacial lake area (m2) 
Uncertainty at 10%.  

Supraglacial pond 
area (m2) 
Uncertainty at 10% 

Pond density % 
of glacier area 

Ice cliff area (m2) 
Uncertainty at 8% 

Ice cliff density as % of 
glacier area 

% of ponds with ice 
cliffs 

1952 38243 ± 3824 0  0 17326 ± 1386 0.17 0 

1961 39206 ± 3921 95 ± 10 0.0009 19954 ± 1596 0.19 100 

1979 31687 ± 3169 0 0 11403 ± 912 0.10 0 

1988 27897 ± 2790 0 0 11683 ± 935 0.10 0 

1996 32885 ± 3289 438 ± 44 0.0041 10567 ± 845 0.10 67 

2009 27731 ± 2773 3407 ± 341 0.0355 36502 ± 2920 0.38 77 

2018 34468 ± 3447 6047 ± 605 0.0650 47615 ± 3809 0.51 100 
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Further analysis of the change associated with the glacial lakes with the addition of further data 

indicates an overall reduction in total area of glacial lakes and of Lake Miage in particular, yet an 

increase in both the number of glacial lakes, specifically of supraglacial ponds (Figure 4.6). A distinct 

change in these trends is observed since 2004 presented by an increasing polynomial trend (R2 = 

0.69).  

 

Figure 4.6: Variability of glacial lakes at Miage Glacier in area (m2). Data show the overall number 
of glacial lakes present (grey bar) inclusive of proglacial lakes, ice-marginal lakes and supraglacial 
ponds, and area of supraglacial ponds (purple dots). *Data covering the area of Lake Miage in 1993 
was not available from the imagery. 

 

Historical analysis of the glacial lakes indicates ongoing change since 1952 (Figure 4.7). The most 

apparent change is of Lake Miage, which shows high levels of water level variability in response to 

known drainage and refilling events with an overall decline in area. Aerial imagery from 2004 taken 

prior to a large drainage event documented to have occurred in September 2004 shows one large 

lake located partly on the glacier and constrained by the lateral moraine on the western side of the 

glacier. Lake Miage is observed in 2006 with substantially lower water levels and with islands, and 

in 2009 as 3 separate lakes consisting of a large proglacial lake, a smaller proglacial lake, with 

substantial reduction in the area of the ice-marginal section. Since 2009, multiple lakes have 

remained and Lake Miage is limited to the ice-marginal section encompassed by moraine deposits.  

Lac Vert, a proglacial lake situated in the northern edge of the southern lobe, has also been a stable 

feature since 1952. Although some variations in size are evident, the location and presence of the 
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lake has remained relatively stable with a distinctive tear-drop shape. The area of the lake 

continued to increase steadily until 2010, at which point it began to decline (Figure 4.6). The lake 

area is more consistent between 2015 – 2018. Sediment strandlines and reduced vegetation were 

observed during the field visits around the edge of the lake indicating that water levels were 

previously higher than at the time of field observation.  

Although, the overall number of supraglacial ponds has increased (Table 4.4), the total area of 

ponded water has reduced (Figure 4.6). The presence of supraglacial ponds on Miage Glacier has 

been observed across the glacier surface; Figure 4.7 shows the distribution of supraglacial ponds 

mapped from the available imagery between 1952 and 2018. Two regions can be highlighted as key 

areas for supraglacial pond presence; Zone 1 (Figure 4.7a) indicating a band of ponds across the 

glacier surface, is located from the southern margin to the northern margin prior to the eastwards 

bend into Val Veny. Zone 2 (Figure 4.7) is located at the top of the southern lobe. In comparison to 

the northern lobe, the southern lobe has a higher frequency of supraglacial ponds. Zone 1 appears 

in the region of thickest ice as determined from the RGI6.0 ice thickness data (Farinotti et al., 2019) 

whereas Zone 2 appears in an area of comparatively thinner ice (Figure 4.7c). Very few ponds have 

been observed between 1952 and 2018 on the upper valley tongue.  
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Figure 4.7: A: Glacial lake change from 1952 – 2018, manually digitised from aerial and satellite imagery. B: Glacial lake density derived from the number 
of years water has been present. C: Ice thickness derived from the RGI6.0 (Farinotti et al., 2019). 
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Four supraglacial ponds of interest (see Chapter 6) are discussed in turn to assess the evolutionary 

characteristics. Supraglacial pond 1 (S1) was located just above the southern terminal lobes in zone 

2 where supraglacial ponds have been observed in years prior to 2017 and 2018 (Figure 4.8). A pond 

has been present here with a large ice cliff since 2012. Prior to 2012, a pond was identified in 2004 

without ice cliffs, although longitudinal crevasses were apparent nearby in a topographically 

undulating area.  

 

Figure 4.8: Development of S1 located at the top of the northern terminal lobe.  

 

Supraglacial ponds S2 – S5 were located in Zone 1 across the width of the glacier. Supraglacial pond 

2 (S2) appears in the imagery in 2015 with ice cliffs and dirty ice present in the current location of 

the pond. Prior to 2015, the location appears to be relatively smooth with homogenous debris cover. 

Images from 2015 and 2016 show a slight depression but there was no clear evidence of water 

indicating that the pond likely formed during the 2017 melt season.  

Supraglacial pond 3 (S3) was not observed prior to 2004. Pooling of water slightly upglacier was 

observed with ice cliffs present in 2015. The pond was surveyed in 2017 and was the smallest of 

the supraglacial ponds surveyed. The region along the southern margin is topographically 

undulating and ponds were typically observed to be located between the higher elevations of the 

central medial moraine and the southern lateral moraine in a region of lower elevation (Figure 4.9). 
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Figure 4.9: The debris-covered Miage Glacier in 2017 looking southeast from the southern lateral 
moraine. S3 (~22 m across, along red line) and a smaller melt pond can be observed in the photo.  

 

Supraglacial pond 4 (S4) is located along the true left margin, just above where the valley glacier of 

the glacier turns to the east into Val Veny. This is an area characterised by exposed ice cliffs and 

ponds and supraglacial streams. In 2004, small supraglacial channels cut through the debris evolving 

into 2 small ponds present by 2009. Two ponds remained present in 2012 nearby the location of 

the current pond. By 2015, the topography in the vicinity of the lower pond was exploited by a 

supraglacial stream. The 2017 location of the pond was located nearby supraglacial channels having 

reformed between 2016 and 2017. This resulted in an area of collapsing cliffs and undulating debris-

covered topography resulting in partial drainage and cliff collapse between visits in 2017 and 2018 

(Figure 4.10).  

S3 
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Figure 4.10: Development of S4 along the northern margin of the valley tongue.  

 

Supraglacial pond 5 (S5) has only been present since 2013 when there was one small pond (Figure 

4.11). Subsequently, two small ponds developed by 2015, and had coalesced by 2017. Another pond 

was present to the southwest of S5 in 2004, with a relatively smooth surface. Ice cliffs pre-existed 

the pond in 2012 and by 2014 a much rougher surface topography can be observed and was evident 

in both the 2017 and 2018 visits.  

 

Figure 4.11: Development of S5 from 2004 – 2018.  
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4.4. Discussion 
4.4.1. The evolution of Miage Glacier 
Previous studies have detailed how Miage Glacier has evolved over the period 1913 to 1999 

(Smiraglia et al., 2000; Thomson et al., 2000). The data sets presented here are in agreement from 

1952 and provide an update to those observations through a period of continued climate warming 

since the 1990s to 2018. The combined results represent a rare opportunity to examine debris-

covered glacier dynamics across decadal and centennial timescales. Thomson et al. (2000) and 

Smiraglia et al. (2000) described spatially and temporally complex patterns of change through the 

twentieth century; modest terminal recession since the LIA maximum were punctuated by a small 

advance during the late twentieth century in response to positive mass balances between the 1960s 

to 1980s, as observed elsewhere in the Alps (Diolaiuti et al., 2003; Huss, 2012). With reference to 

the 3-stage debris-covered glacier evolution model of Benn et al. (2012), Miage Glacier was 

consistent with ‘Regime 1’ during the twentieth century (Thomson et al., 2000) in that it 

experienced limited water storage on the glacier surface. Over the period 1988 to 2018, these data 

reveal that Miage Glacier has transitioned into ‘Regime 2’, characterised by increased surface water 

storage and expanding debris cover (Table 4.2 and Table 4.3).  

In terms of surface changes, there has been only modest overall area loss (−8%) (Table 4.2) and a 

small amount of recession of the terminal lobes (of ~135 ± 4.04 m) over the full observation period 

from 1952 to 2018, but there are notably more substantial local area reductions in the tributary 

glaciers that feed Miage’s main trunk. Debris cover has expanded by ~0.4 km2 up-glacier from 1988 

to 2018, increasing from 40% to 52% of the total glacier surface area (Figure 4.4, Table 4.2). Likewise, 

the increasing debris cover at Miage Glacier is similar to that seen since the 1990s on 

Zmuttgletscher (Mölg et al., 2019) and on the glaciers of the Ortles-Cevedale Group, Italy (Azzoni 

et al., 2018). Multiple flow units identified by the incorporation of debris, are derived from the 

numerous icefalls and confluence of tributary glaciers as flow is divided around the bedrock 

outcrops on Mont Blanc Glacier. The debris forms lateral and medial moraines, fed from the 

bedrock outcrops, glacially eroded valley sides, and small but frequent landslide, rockfall and 

avalanche events (Deline, 2009; Rowan et al., 2015). Over the study period, identification of these 

flow units becomes limited and the merging and thickening of debris has resulted in a massive, non-

distinct unit as the surface topography becomes increasingly undulating, enhanced by the 

availability of debris to the glacier surface from the intensification of rockfall events and resulting 

differential ablation (Reynolds, 2000). Identification of two rockfall events in c.1945 and 1988 

through distinct lithological variations to the surrounding debris (Figure 4.4) can be traced 

downglacier and generally maintain their shape (Deline, 2009) indicating relatively stable ice flow 

velocity across the glacier width of the multiple flow units. However, the c.1945 rockfall deposits 

(Deline, 2009) were not visibly identified in the 1952 imagery but is observed by 1961 and could 



Page | 67  
 

indicate some discrepancy over the exact date of the event. As debris is transported down-glacier 

(Goodsell et al., 2005a), the terminal lobes are considered to have undergone longitudinal 

compression and debris accumulation resulting in increased debris thickness (Mihalcea et al., 2008; 

Foster et al., 2012). 

Notably, supraglacial ponds have begun to emerge on the surface of Miage Glacier since 1990s with 

a noticeable increase in number since 2004 indicating a potential tipping point or threshold has 

been reached (Table 4.4 and Figure 4.6) and now cover >6000 m2, whilst ice cliffs have increased in 

area by 308% since 1988 (Table 4.3). The recent emergence and growth of supraglacial ponds and 

ice cliffs on Miage Glacier is a particularly striking surface expression of the transition to ‘Regime 2’ 

of the debris-covered glacier evolution model (Benn et al., 2012). These observations are broadly 

consistent with the evolution of debris-covered glaciers elsewhere that are experiencing negative 

mass balances in response to climate change (e.g. Benn and Lehmkuhl, 2000; Scherler et al., 2011; 

Benn et al., 2012; Bolch et al., 2012; Rowan et al., 2015). 

 

4.4.2. Decay of Miage Glacier since 1990s 
Miage Glacier shows complex glacier dynamics largely influenced by the four large tributary glaciers, 

which feed the main glacier trunk. The structural evolution of Miage Glacier from 1952 to 2018 

indicates it has undergone a change from one of an active ice flow regime followed by a period of 

substantial deterioration since the 1990s, which has continued until 2018. The initial state of the 

glacier in 1952 indicates an active ice flow regime with production of primary stratification in the 

accumulation zones and formation of new, multi-directional crevasses through the icefall indicating 

intense strain regimes, and ogives forming in the compressional zones at the base of the icefalls 

(Figure 4.2). Previous studies observed a period of thickening between 1975 and 1999 (Thomson et 

al., 2000) attributed to a wave of ice, which migrated downglacier (Smiraglia et al., 2000). This was 

observed during the 1980s with an increase in the abundance of crevasses compared to previous 

years, especially in the lower valley tongue with a convex surface in relation to the valley sides 

suggestive of comparatively increased ice mass, but structural evidence (as discussed below) 

suggests a persistent state of deterioration and ice loss since this period.  

The spacing between ogives on Miage Glacier reduced over the observation period and is 

considered to represent a reduction in annual velocity (e.g. King and Lewis, 1961; Goodsell et al., 

2002; Vincent et al., 2018). Assuming the ogives represent annual passage of winter and summer 

bands (Nye, 1958), a reduced distance between the spacing of the bands could indicate reduced 

passage of ice through the icefalls. Tête Carrée Glacier has continued to produce new ogives, albeit 

closer spaced throughout the observation period as has Dome Glacier, but to a lesser extent 

indicating continued ice flux and reduced ice flow velocities.(Figure 4.3). The visibility of ogives is 
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dependent upon on a number of factors including ice flux through the ice fall (e.g. Azzoni et al., 

2017), obscuration by debris or snow cover, quality of the imagery and presence of shadowing. The 

expansion of the bedrock outcrop at the base of Mont Blanc Glacier icefall since 1996, reduction of 

ogive spacing and reduction of Mont Blanc Glacier accumulation area supports a reduction in ice 

flux through the icefall and progression towards a state of deterioration. It is therefore likely that 

Mont Blanc Glacier will become detached from Miage Glacier if further ice collapse around the 

bedrock outcrop continues resulting in reduced ice flux to the valley section.  

Collapse features near to the confluence of the tributary glaciers with Miage Glacier, identified as 

two circular sections of exposed ice were observed in 2009 (Figure 4.4). These were classified as ice 

cliffs in the imagery due to the exposure of ice and are considered to be linked to the positions of 

previous supraglacial ponds and moulins, as identified in 2010 by Fyffe et al. (2012). Previous 

studies on the Forni Glacier, Switzerland (Azzoni et al., 2017) and the Pasterze Glacier, Austria 

(Kellerer‐Pirklbauer and Kulmer, 2019) observed similar circular structures associated with faults, 

although these features were observed lower on the ablation zone in comparison to those observed 

at Miage Glacier. Due to the debris cover it is not possible to ascertain whether faults existed prior 

to the collapse of these features. Further evidence of collapse is the disintegration of the northern 

lobe outlet stream, which appears after 1988 with no prior visible observation.  

The combination of reduced crevassing, visibility of ogive bands, ice flux via Mont Blanc Glacier, and 

the presence of collapse structures since the 1990s suggest reduced glacier dynamics and 

progression to an enhanced state of deterioration. Thus, resulting in a more undulating surface 

promoting debris redistribution (Zhang et al., 2011; Gibson et al., 2017a) and enabling coalescence 

of meltwater and ablation to occur on exposed ice surfaces.  

 

4.4.3. The development of surface features 
Over the full observation period from 1952 to 2018, Miage Glacier has seen an increase in ice cliff 

area from 17,326 m2 to 47,615 m2 and the presence of supraglacial ponds has grown from zero to 

6,047 m2 indicating a further state of the deterioration scenario and evolution into ‘Regime 2’ (Benn 

et al., 2012) (Table 4.3). Furthermore, a distinct increase in supraglacial pond area and ice cliff 

density since the 1990s could represent a response to an increase in temperature and precipitation 

in the early 1990s (Salerno et al., 2014). Such an increase in surface features is likely to have future 

implications for the evolution and mass balance of Miage Glacier (e.g. Benn et al., 2012; Pellicciotti 

et al., 2015; Thompson et al., 2016; Watson et al., 2017b). Furthermore, ponded area is often used 

as a proxy for water storage and glacier ablation (Gardelle et al., 2011; Liu et al., 2015; Watson et 

al., 2016), yet small ponds are often overlooked and not included in such assessments.  
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The development of ice cliffs in a region where longitudinal crevasses previously dominated, 

emphasises the importance of pre-existing structures, which have become exposed and are 

subjected to enhanced ablation further promoting regions of high-relief and undulating topography 

(e.g. Mölg et al., 2020). The region of crevassing above the terminal lobes (Figure 4.2 and Figure 4.3) 

indicated a region of extensional strain normal to the direction of the crevasse as the ice flows into 

the separate terminal lobes has been observed since 1952 and has become more undulating over 

time. Thus, such regions are important to monitor and assess in terms of ablation patterns and 

evolution of debris-covered glaciers.  

Locations of supraglacial pond formation are observed above the terminal lobes along the main 

valley trunk with repeated pond presence at similar locations. Concurrently, increased debris cover 

and reduced ice flow along the northern margin resulting from reduced mass transfer from Mont 

Blanc Glacier was observed. This represents a reduction of the driving stress and hence promotes 

glacier stagnation and reduces the likelihood of intercepting englacial conduits (Quincey et al., 2007; 

Watson et al., 2016; Dehecq et al., 2019). Thus, many of the supraglacial ponds were observed to 

form in two zones; one covering a band from the southern to the northern margin located above 

Lake Miage (Zone 1) and the second on the southern terminal lobe (Zone 2) (Figure 4.7), with limited 

up-glacier ponds where glacier flow is considered to be more active. The steeper terminal lobes 

further add to inhibit pond development. The distribution of supraglacial ponds are further 

attributed to topographic controls of the valley and ice thickness due to overdeepenings at the bed 

and may have influenced the presence of a persistent pond at S1 since 2012 as in Figure 4.8 

(Farinotti et al., 2019; Magnin et al., 2020; Viani et al., 2020). The rotation of the glacier into the 

valley, Val Veny, is likely to cause intense lateral drag and extensional stress previously observed 

on the Forni Glacier (Azzoni et al., 2017). Such a regime is considered to have promoted the 

formation and of ice cliffs and supraglacial ponding on Miage Glacier similar to those observed on 

Langtang Glacier, Nepal by Kraaijenbrink et al. (2016b), which formed near confluences from 

tributary glaciers in regions of transverse compression and associated increased strain acting to 

close englacial conduits, limiting drainage and promote ponding.  

In addition to the glacier flow regimes and topographic controls, which are likely to exert controls 

on the locations where supraglacial ponds tend to form, it is considered that ponds are likely to 

occur in locations associated with pre-existing ice weaknesses. Supraglacial ponds form where 

regions of structural weakness can be exploited, such as crevasse traces and englacial conduits, and 

thus often coincide with drainage and expansion processes as observed at Spillway Lake (Benn et 

al., 2017). It is presumed that the presence of pre-existing structural weaknesses are also play a 

role in determining the location of pond formation. Many debris-covered glaciers are located in 

high-mountain regions, which commonly have large icefalls such as the Khumbu Glacier, Nepal 

(Fushimi, 1977). Icefalls often dominate the glacier dynamics resulting in a complex structure and 
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inherent structural weaknesses. Examples in the Alps identified a ring fault observed on the Forni 

Glacier tongue, Switzerland, which was later replaced by an ice-contact lake (Azzoni et al., 2017). 

The locations of supraglacial ponds at Miage Glacier are typically observed close to regions of 

crevassing upglacier and in areas of ice cliffs and crevasses as evident with S5, which formed in a 

region previously dominated by undulating surface topography and ice cliffs (Figure 4.11). It is 

therefore considered that pre-existing structural weakness in the ice once intersected with 

meltwater, have the potential to be exploited and form sections of exposed ice initiating the 

formation of ice cliffs or supraglacial ponds and thus ponds and cliffs are often identified in regions 

of high relief and supraglacial streams (Mölg et al., 2020). Furthermore, Zone 2 represents the 

higher positions of ponds on the glacier surface with limited ponding up-glacier attributed to an 

extensive supraglacial drainage system upglacier where debris is comparatively thinner and 

reduced efficiency of the lower glacier hydrological system (Fyffe et al., 2012). Thus, the 

combination of debris cover, glacier flow, valley and bed topography, and the hydrological system 

exploiting pre-existing ice weaknesses are important factors in controlling the distribution of 

ponding on the surface of Miage Glacier.  

 

4.5. Summary 
Structural mapping and analysis of surface features at Miage Glacier from 1952 to 2018 has enabled 

assessment of the evolution of the glacier dynamics. Miage Glacier represents a compound and 

complex glacier consisting of four main tributary glaciers with icefalls joining at the confluence with 

the valley tongue thus resulting in multiple flow units with heavily crevassed and faulted glacier ice. 

The overall glacier dynamics appear to have gone from one of an active ice flow regime with 

increased glacier activity in the 1980s, to one of deterioration since the 1990s. The changes are 

largely evident on the glacier valley tongue with increasing debris cover (+10% from 1996 – 2018) 

and increasing total area of supraglacial ponds (>6000 m2 by 2018) and ice cliffs on the lower section 

(+308% since 1988). Collapse features are evident around the base of Mont Blanc Glacier icefall, an 

ice cliff structure, and at the northern lobe terminus. It is expected that if climatic change 

progresses as predicted, Miage Glacier will continue to deteriorate with an increase in the number 

and extent of ponds, ice cliffs and collapse features.  

This study has shown that repeat structural analysis is able to provide important insights into both 

long- and short-term glacier evolution to better understand the response to current and future 

conditions. Furthermore, analysis has highlighted the time period since the 1990s as key in terms 

of its deterioration and the importance of supraglacial ponds and ice cliffs on future glacier 

evolution, and the potential implications of debris cover, glacier flow, valley and bed topography, 

and the hydrological system exploiting pre-existing ice weaknesses in the development and 
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distribution of ice cliffs and supraglacial ponds. Further analysis of the glacier dynamics over this 

period of sustained decay (1990 – 2018) is required to further assess and understand the processes 

of the evolution of Miage Glacier. Quantifying changes in mass balance and surface velocity over 

this time period, and exploring contemporary interactions between glacial lakes and ice cliffs may 

provide further insight into debris-covered glacier evolution. These will be examined in Chapters 5 

and 6. 
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Chapter 5 : Mass balance and surface velocity of Miage Glacier 
5.1. Introduction  
The previous chapter highlighted the development of surface features and an undulating surface 

topography since the 1990s. As previously recognised (see Chapter 2), such surface features are 

important for altering glacier mass balance and ice dynamics. Thus, this chapter is concerned with 

the mass balance and surface velocity of the debris-covered Miage Glacier in the Mont Blanc massif, 

European Alps, over nearly three decades from 1990 to 2018. The relatively recent development of 

supraglacial ponds and ice cliffs on Miage Glacier (Figure 4.4) may have an important, yet under-

appreciated, role in influencing the mass balance. The presence of glacial lakes at Miage Glacier has 

been documented (Tinti et al., 1999; Diolaiuti et al., 2005), but supraglacial ponds have received 

little detailed attention, with most studies focussing on the ice-marginal lake, Lake Miage, located 

on the southern margin as the glacier turns eastwards into Val Veny (Figure 3.5).  

Debris-covered glacier response to climatic variability remains poorly understood because of the 

complex feedbacks between climate, mass balance, velocity, change in debris cover and surface 

features (ice cliffs and ponds). Studies that integrate observations of these elements over annual, 

decadal and centennial timescales, and across the full glacier extent can help to unpick some of 

these complexities. This chapter provides a detailed appraisal of the dynamics of the debris-covered 

Miage Glacier over a 28-year time period from 1990 to 2018. This study overlaps with previous 

census periods for this glacier covering 1913 to 2012 (Thomson et al., 2000; Diolaiuti et al., 2009; 

Berthier et al., 2014), enabling long-term evolution and dynamics to be assessed. Specifically, the 

objectives of this study are: (i) to assess topographic changes of Miage Glacier over multi-decadal 

and multi-annual time scales; (ii) to assess the role of supraglacial ponds and ice cliffs on Miage 

Glacier dynamics; and (iii) to place the findings within the broader context of long-term 

observations at this glacier. Overall, this work provides an integrated assessment of the long-term 

evolution and feedbacks between mass balance, velocity, and surface features, which aids our 

understanding of debris-covered glacier response to climatic change in the world’s high mountain 

regions.  

 

5.2. Methods 
A range of data sources were utilised for this study including satellite imagery for DEM production, 

surface velocity and surface gradient analysis (Table 5.1). Satellite data ranged from coarse 

resolution 30 m Landsat-derived surface displacements from 1990/91 to 2017/18, to high-

resolution SPOT (1990, 2016 and 2018 data supplied by European Space Agency (ESA)), LiDAR 

Digital Terrain Model (DTM; 2 m) (2008 supplied by Valle d’Aosta; 

http://metadati.partout.it/metadata_documents/ Specifiche_LIDAR.pdf), and Pleiades (2012 – 

2014) (data supplied by ESA) DEMs (Table 5.1). All analyses were carried out in PCI Geomatica 
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Orthoengine, open-source image correlation software CIAS (Kääb and Vollmer, 2000; Heid and Kääb, 

2012) and ArcGIS.  

Table 5.1: Data sets used within this study (SPOT and Pleiades data provided by ESA, 2008 LiDAR 
DEM from Valle d’Aosta). All datasets used the panchromatic band for DEM extraction and SWIR 
for surface velocity analysis. 

Date of 
acquisition 
(dd/mm/yr) 

Sensor Image 
Resolution 
(m) 

Image Pairs Data extracted 

26/08/2018 SPOT-7 1.5 Stereo DEM/ Surface gradient 
12/10/2016 SPOT-7 1.5  Stereo DEM/ Surface gradient 
26/08/2015 TerraItaly 

Orthophoto 
0.2 - Aid GCP collection 

02/10/2014 Pleiades 1B 0.5  Stereo DEM/ Surface gradient 
19/08/2012 Pleiades 1A 0.5  Stereo DEM/ Surface gradient 
20/08/2008 LiDAR – Valle d’Aosta 2.0 - DEM/ Surface gradient 
19/08/1990 
22/07/1990 

SPOT-1 
SPOT-1 

10.0 
10.0 

2 overlapping 
images  

DEM/ Surface gradient 

20/09/1989 SPOT Ortho 10.0 - Aid GCP collection 
16/08/1990 
19/08/1991 

Landsat5 TM 
Landsat5 TM 

30.0 
30.0 

 Surface velocity 

16/07/2008 
05/09/2009 

Landsat5 TM  
Landsat5 TM 

30.0 
30.0 

 Surface velocity 

19/08/2017 
23/09/2018 

Landsat8 OLI 
Landsat8 OLI 

30.0 
30.0 

 Surface velocity 

 

 

5.2.1. Digital Elevation Models (DEM) extraction 
The data sets used for DEM production were acquired during the ablation season to provide input 

images with little or no snow cover at similar dates for each year (ideally July to September). The 

number of useable data sets was limited by cloud cover and appropriate viewing-angles required 

for elevation extraction. Where possible, contemporaneous tri-stereo Pleiades data were used for 

higher accuracy DEMs to be produced due to the inclusion of nadir imagery. 

All DEMs (1990 – 2018) were produced based on automatic stereo-correlation using the normalised 

cross correlation (NCC) algorithm within PCI Geomatica Orthoengine. The images were aligned 

based on the Rational Polynomial Coefficient (RPC) models and geolocation was improved by use 

of additional Ground Control Points (GCPs) from high-resolution 2015 orthoimagery (0.2 m). Tie-

points were then identified in each image pair (Table 5.2). GCPs based on ortho-corrected imagery 

from 1989 with the same resolution were used to improve the georeferencing. Tie-points were then 

automatically selected in corresponding image pairs. GCPs and tie-points maintained low residuals, 

<5.5 pixels equating to <16 m for the 1990 DEM, and <3 m for all other DEMs. All automatically 
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assigned GCPs and tie-points were manually checked to remove any erroneous points. The number 

of GCPs varied depending on the ability to accurately identify matching locations (Table 5.2). As 

such, increased numbers of tie-points were used to aid point matching for elevation extraction.  

 

Table 5.2: Summary of the GCPs and tie-points used to enhance the alignment of the imagery prior 
to DEM extraction.  

DEM Number of GCPs Residuals 
X, Y (Pixels) 

Number of tie-
points 

Residuals 
X, Y (Pixels) 

1990 90 0.79, 0.34 150 1.56, 0.23 
2012 2 1.53, 2.10 96 0.12, 0.03 
2014 2 2.18, 5.41 64 0.22, 0.06 
2016 36 0.39, 0.64 48 0.14, 0.04 
2018 16 0.54, 1.51 40 0.10, 0.03 

 

During the DEM production, smoothing was set to medium with a Wallis filter in PCI Geomatica 

Orthoengine to improve image contrast in areas of shadow and reduce noise in the resulting models 

(Baltsavias et al., 2007). DEMs were produced at extra high detail within mountainous terrain to 

enable extraction of finer details including ice cliffs to produce a geocoded DEM output at twice the 

resolution of the input data and range from a 20 m 1990 DEM, to two 1 m resolution Pleiades 

datasets from 2012 and 2014. SPOT6 and 7 are now available in 12-bit encoding and are therefore 

comparable to Pleiades data providing higher radiometric resolution and improved contrast over 

snow/ice, which reduces the signal saturation (e.g. Berthier et al., 2014). However, as Miage Glacier 

is mainly debris covered, this improvement for mapping is less important in this study with the 

exception of the higher accumulation zones and tributary glaciers.  

The DEMs were cleaned, edited and assessed based on the correlation scores. Correlation 

coefficient scores range from 0 indicating a total mismatch, to 1 indicating a perfect match for each 

image pixel (Cheng, 2015). Pixels with poor correlation resulting from poor matches (<0.5) and 

identifiable interpolation errors outside of the glacier extent were removed to aid co-registration. 

A total of five DEMs were generated from satellite images to determine temporal change in surface 

elevation and geodetic mass balance.  

 

5.2.1.1. DEM differencing 
In order to assess change over time, DEM differencing was carried out based on the co-registration 

method developed by Nuth and Kääb (2011). This method provides a workflow for DEM co-

registration and bias correction via minimising root mean square residuals of the elevation biases 

over stable terrain as previously detailed in Robson et al. (2018). Unstable areas within the imagery 

including all glaciated areas, were masked out to aid co-registration on stable terrain. Each pair of 
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DEMs (e.g. 1990 and 2008) were co-registered separately. Elevation bias is stronger on steeper 

terrain and was therefore normalised for slope and plotted against aspect. This process is reiterated 

until the improvement of the standard deviation of the residual over stable terrain was less than 2% 

(Figure 5.1). DEM co-registration shifts of each pair were less than 5.1 m (Table 5.3).  

  

Figure 5.1: Example plots of the coregistration method showing slope normalised terrain elevation 
differences between two DEMs over stable (non-glacier) terrain A: before co-registration, and B: 
after 3 iterations. The co-registration shifts that were applied during the processing are shown in 
red text. 

 

Filtering and editing was undertaken with pixels with surface changes exceeding three times the 

standard deviation of the stable terrain elevation bias removed and spline (area <10 pixels) and 

polynomial (areas >10 pixels) interpolations used to fill the gaps following the approaches by Bolch 

et al. (2011) and Gardelle et al. (2013). 

 

Table 5.3: DEM co-registration shifts and DEM differencing uncertainty. The mean deviation, 
standard deviation and uncertainty are based on the co-registered DEM pairs. Statistics are based 
on stable (non-glacier) terrain. DEM differencing uncertainty represents the sum of standard errors 
for each 100 m elevation band. 

DEMs X (m) Y (m) Z (m) Mean 
deviation (m) 

Standard 
deviation 
(m) 

DEM differencing 
uncertainty (m) 

1990-2018 -5.1 0.7 -2.1 -0.2 24.6 0.22 
1990-2008 -2.8 -3.8 -2.6 1.0 13.5 0.27 
2008-2018 1.0 3.7 -0.6 -0.7 6.4 0.12 
2012-2018 1.8 2.5 0.5 0.6 5.4 0.10 
2012-2014 1.6 -4.4 -0.2 0.7 4.3 0.10 
2014-2016 -3.2 1.9 -0.4 -1.0 4.8 0.09 
2016-2018 3.2 2.9 0.5 0.5 5.9 0.20 
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5.2.1.2. Geodetic mass balance and surface elevation change 
Surface elevation change was calculated based on the mean change over each time period of DEM 

differencing for areas delineated by glacier extents relevant to that time period. The geodetic mass 

balance was determined based on an assumed ice density of 850 ± 60 kg m-3 (Huss, 2013). 

Emergence velocity was not calculated for this study following commonly used methods for glacier-

wide geodetic mass balance calculations (e.g. Thomson et al., 2000; Paul et al., 2007; Gardelle et 

al., 2013; Pellicciotti et al., 2015; Berthier et al., 2016; Thompson et al., 2016), but this is consistent 

with previous studies of glacier thickness change (e.g. Thomson et al., 2000; Diolaiuti et al., 2009). 

However, it is acknowledged that by not considering emergence velocity a source of uncertainty is 

introduced.  

In order to determine the uncertainty for glacier surface elevation change and geodetic mass 

balance, the approach outlined by Gardelle et al. (2013) as described by Falaschi et al. (2019) was 

used. This method accounts for the uncertainties relating to (i) the volume to mass conversion (𝐸𝐸𝐸𝐸), 

(ii) the uncertainty related to glacier area digitisation (𝐸𝐸𝐸𝐸), and (iii) the glacier volume change 

uncertainty (𝐸𝐸∆𝑣𝑣). A density of 850 ± 60 kg m−3 was used to convert the ice volume to a mass (𝐸𝐸𝐸𝐸), 

following Huss (2013) and a glacier area uncertainty of 5% based on the value from repeat 

digitisations (𝐸𝐸𝐸𝐸). The total volume change uncertainty (𝐸𝐸∆𝑣𝑣) was determined over 50 m elevation 

bands (𝐸𝐸∆𝑣𝑣𝑣𝑣) based on the standard error (SE). The standard error (SET) considers the standard 

deviation of elevation changes over stable terrain (Equation 5.1), the number of pixels in the DEM 

difference in that elevation band (Equation 5.2), and the degree of spatial autocorrelation, which, 

based on Bolch et al. (2011), was taken to be 20 times the pixel size (King et al., 2017). The volume 

change uncertainty per elevation band (𝐸𝐸∆𝑣𝑣𝑣𝑣 ) was then summed-up over the entire glacier 

(Equation 5.3). Finally, Ep, Ea and 𝐸𝐸∆𝑣𝑣 were combined in a root mean square sum (Equation 5.4). 

The surface elevation change uncertainty ranged from ±0.01 to ±0.13 m, and the geodetic mass 

balance uncertainties ranged from ±0.09 to ±0.27 m w.e. a−1 (Table 5.3).  

𝐸𝐸∆ℎ =  𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎
√𝑁𝑁

         Equation 5.1 

𝑁𝑁 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ×𝑃𝑃𝑃𝑃
2𝑑𝑑

         Equation 5.2 

𝐸𝐸∆𝑣𝑣𝑣𝑣 =  ∑ 𝐸𝐸∆ℎ𝑖𝑖𝑛𝑛
𝑖𝑖 ∗  𝐴𝐴𝐴𝐴        Equation 5.3 

𝐸𝐸∆𝑡𝑡𝑡𝑡𝑡𝑡 = �𝐸𝐸2∆𝑣𝑣 + 𝐸𝐸2𝑝𝑝 + 𝐸𝐸2𝑎𝑎       Equation 5.4 

 

5.2.2. Surface velocity 
Surface velocity was measured using a feature-tracking approach. Pairs of Short Wave Infrared 

(SWIR) band Landsat5 Thematic Mapper (TM) and Landsat8 Operational Land Imager (OLI) imagery 

from 1990/1991, 2008/2009 and 2017/2018 were used to determine annual glacier surface 

velocities (Table 5.1) from the same orbit (row/path) to aid velocity tracking (Sam et al., 2016). 
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Features on the surface were matched using a normalised cross-correlation of orientation (NCC-O) 

images using open-source software, CIAS (Kääb and Vollmer, 2000). Orientation images were used 

to reduce the influence of scene illumination by using gradients between neighbouring pixel values 

instead of raw digital numbers where variations in scene illumination and presence/absence of 

shadow varied (Robson et al., 2018). Surface features were tracked in CIAS providing displacement 

vectors. Reference block size and search size were set in relation to the input image resolution while 

the search size was set to twice the expected surface velocity. As the input images all had the same 

resolution, the block, search and output resolution values were set to 15, 20 and 30 respectively.  

Displacement vectors were filtered by initially removing those with a signal to noise ratio (SnR) <0.5. 

They were then filtered by direction and magnitude, removing any apparent erroneous points. A 

3x3 focal statistics filter was used to remove displacement vectors, which varied more than 20% in 

direction or magnitude to the surrounding mean values (Robson et al., 2018). Manual filtering was 

required including removal of points associated with cloud or shadow. Displacement vectors were 

then converted into surface velocity per year.  

GNSS positions of 6 boulders were recorded during field visits in 2017 and 2018 using a Trimble 

Geo7x GNSS and post-processed using RINEX data from the Morgex base station <15 km from 

Miage Glacier. The mean accuracy of position data was ±0.03 m, enabling comparison of surface 

velocity rates around Lake Miage. Analysis of boulder movement shows a mean of 12 m a−1 in the 

vicinity of Lake Miage complementing the results from the 2017 – 2018 surface velocity data. 

Surface velocity accuracy was determined by measuring displacements over stable terrain based 

on 87 random points <500 m from Miage Glacier termini. The points were situated along stable 

terrain with a gentle slope, free from shadow and snow/cloud were identified from satellite imagery 

and fieldwork. The accuracy associated with the surface velocity feature tracking is stated in Table 

5.4.  

 

Table 5.4: Accuracy assessment of the surface velocity feature tracking (m a−1).  

Velocity data set Standard Deviation 
(over date time) 

Mean (m a−1) 

1990 – 1991 Landsat 5 5.29 9.18 
2008 – 2009 Landsat 5 2.25 5.71 
2017 – 2018 Landsat 8  4.82 6.58 
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5.2.3. Longitudinal profile and surface gradient 
The longitudinal profile of Miage Glacier was assessed based on the output DEMs. The longitudinal 

profile of the centreline was extracted in ArcGIS and plotted to enable the overall gradient in the 

profile to be calculated and provides an update to that presented by Smiraglia et al. (2000). The 

gradient was calculated for the total distance from the glacier southern lobe termini to the base of 

Bionnassay Glacier where the tributary glaciers join. The profile gradient was then also calculated 

for the debris-covered extent as derived from Chapter 5 and the region where supraglacial ponds 

were present.  

 

5.3. Results 
5.3.1 Surface elevation change and geodetic mass balance 1990 – 2018 
The overall trend in elevation change across the 1990 to 2018 study period is one of downwasting 

(Figure 5.2). Between 1990 and 2018, Miage Glacier experienced substantial downwasting of 

−1.01 ± 0.09 m a−1 on average; however, thinning rates have slowed from -1.07 ± 0.16 m a-1 

between 1990 and 2008, to −0.85 ± 0.06 m a−1 between 2008 and 2018 (Table 5.5). 

 

Table 5.5: Vertical surface elevation change and geodetic mass balance of Miage Glacier from 1990 
to 2018 based on DEM differencing. Standard errors for elevation change and uncertainty values 
for geodetic mass balance provided. 

Date  Surface elevation 
change (m a−1) 

Mean geodetic mass 
balance (m w.e. a−1) 

Debris-covered 
region surface 

elevation change 
(m a−1) 

1990 – 2018  −1.01 ± 0.09 −0.86 ± 0.27 −1.25 ± 0.09 
1990 – 2008  −1.07 ± 0.13 −0.88 ± 0.22 −1.17 ± 0.13 
2008 – 2018  −0.85 ± 0.01 −0.67 ± 0.12 −1.30 ± 0.01 
2012 – 2018  −0.62 ± 0.02 −0.53 ±0.10 −1.82 ± 0.02 
2012 – 2014  −0.51 ± 0.10 −0.35 ± 0.17 −1.36 ± 0.10 
2014 – 2016  −0.45 ± 0.03 −0.30 ± 0.09 −0.92 ± 0.03 
2016 – 2018  −0.85 ± 0.10 −0.64 ± 0.20 −1.21 ± 0.10 
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Figure 5.2: Mean annual surface elevation change in metres with a hillshaded elevation model as background. A: 1990 – 2018, B: 1990 – 2008, C: 2008 – 2018, D: 2012 – 
2014, E: 2014 – 2016, F: 2016 – 2018. Note uncertainty associated with the nunatak at the base of Mont Blanc Glacier due to shadow in input data. 
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High thinning rates were evident at the base of Tête Carrée Glacier (TC) and Bionnassay Glacier (BG) 

where debris cover has expanded over the period (Figure 5.2). In comparison, the debris-covered 

valley tongue has undergone sustained downwasting over the full period, but thinning rates are 

reduced on the terminal lobes. From 1990 – 2018, the debris-covered region experienced mean 

annual downwasting of −1.25 ± 0.09 m a−1; in comparison, the terminal lobes underwent thinning 

rates of −0.94 ± 0.09 m a−1. The tributary glaciers present the largest increases in surface elevation 

associated with snow accumulation and ice dynamics at higher elevations (Figure 5.2). 

 

Pleiades and SPOT6/7 DEM differencing from 2012 to 2018 enables recent change to be explored 

at higher spatial and temporal resolutions (Figure 5.2). Table 5.5 indicates that the rate of thinning 

has increased over the period 2012 to 2018 from −0.51 ± 0.04 m a−1 between 2012 to 2014, to −0.85 

± 0.10 m a−1 from 2016 to 2018, with a mean surface elevation change of −0.62 ± 0.02 m a−1 over 

the period 2012 – 2018, yet these rates are lower than the 2008 – 2018 period indicating reduced 

mass loss in the last decade.  

Heterogeneous elevation change is evident across the glacier surface with enhanced thinning at the 

base of Mont Blanc Glacier (MB) associated with a physical detachment and icefall events resulting 

in a visibly larger nunatak area. The nunatak at the base of Mont Blanc Glacier was often in shadow 

in the input data and likely to be responsible for the uncertainty associated with opposing trends 

in Figure 5.2. Collapse features at the base of Dome Glacier were also evident between 2012 and 

2014 depositing an area of rock and ice of ~9343 m2 to the glacier surface (Figure 5.3). Once 

deposited on the surface, debris will become entrained and increase debris to both the surface of 

the glacier and englacially.  

 

 

 
Figure 5.3: Debris inputs onto Miage Glacier from Dome Glacier. A: Image of the area before 
deposition. B: Area of deposition after the event. C: Amount of surface change between 2012 and 
2014.  
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5.3.2. Surface velocity change 1990 – 2018 
Over the observation period, the mean surface velocity of the glacier decreased by 46% from 

35 ± 0.05 m a−1 in 1990/91 to 16 ± 0.05 m a−1 in 2017/18, (Figure 5.4). The ice in the terminal lobes 

has undergone a strong reduction in mean velocity over the same period from 20 ± 0.23 m a−1 to 

6 ± 0.11 m a−1, a velocity reduction of 70%. Central parts of the northern and southern lobes are 

near stagnant at <3 m a−1. The tributary glaciers and central valley section show the most vigorous 

flow rates but have also seen an overall decrease in velocity over the study period. 

 

Figure 5.4: Landsat derived surface velocity displacements. A: 1990 – 1991, B: 2008 – 2009, , C: 
2017 – 2018 with velocity transects used in Figure 5.5 and Figure 5.6. Contours at 200 m intervals.  

The central valley section indicates active flowing ice. Surface velocity reduces once the ice flows 

eastwards into Val Veny and splits into the terminal lobes (Figure 5.5). The northern and southern 

lobes experienced a decrease in velocity within these areas.  

 

 

Figure 5.5: Landsat derived ice flow velocity fields with longitudinal profiles along the centreline to 
the top of the terminal lobes. 
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Figure 5.6: Downstream surface velocities along the northern lobe (left) and southern lobe (right) 
as shown in Figure 5.4C. 

 

Faster ice flow is apparent on the central section flowing in a straight line down valley before the 

glacier splits into the terminal lobes and turns into Val Veny (Figure 5.5). Variations in ice flow are 

evident in transects along the terminal lobes with an overall decrease at the ice margins to rates of 

<5 m a−1 (Figure 5.6).  

 

5.3.3. Longitudinal profiles and surface gradients 
The longitudinal gradient of the centreline has reduced modestly over the study period from 6.63 

to 5.91° (Figure 5.7). Furthermore, the valley section from the base of Bionnassay Glacier to the top 

of the terminal lobes has changed very little from 5.21 to 5.15°. Supraglacial ponds are present on 

the section of the glacier with overall lowest and thus ‘flattest’ section, which has undergone very 

slight increase in gradient from 4.10° in 1990 to 4.82° by 2018.  

 

 

Figure 5.7: Longitudinal profile of the glacier centreline in 1990 and 2018. 
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5.3.4. Analysis of supraglacial ponds and ice cliffs 
Surface elevation change patterns from 2012 to 2018 show specific regions with higher thinning 

rates (Figure 5.2) that are coincident with the locations of supraglacial ponds and ice cliffs (Figure 

5.8). Areas of positive elevation change are evident attributed to advection of hummocky 

topography, pond water level change or debris redistribution. For each DEM, the associated surface 

lowering in areas with mapped supraglacial ponds and ice cliffs was extracted (Table 5.6). All ponds 

and ice cliffs present in the satellite imagery from 2012, 2013 and 2014 were merged and extracted 

from the 2012 – 2014 DEM differencing, and repeated for the 2014 – 2016 and 2016 – 2018 periods.  

For the periods 2012 – 2014 and 2014 – 2016 comparable rates of surface lowering (−3.77 

± 0.10 m a−1 and −3.79 ± 0.20 m a−1 respectively) were determined at ice cliff locations. However, in 

the latter period of assessment (2016 – 2018) surface lowering had reduced to −3.48 ± 0.25 m a−1  

when ice cliffs presented a lower percentage of the debris-covered area during this time (Table 5.6).  

 

 

Figure 5.8: A: Total surface change from 2012 – 2014, B: Surface change from 2014 – 2016, and C: 
Surface change from 2016 – 2018, and D: Locations of supraglacial ponds from 2012 – 2018 and E: 
Locations of ice cliffs from 2012 – 2018. 
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Table 5.6: Variations in ablation rates associated with supraglacial ponds and ice cliffs, and density 
as a percentage of the debris-covered area from RGI6.0 analysis. Proportions of pond and ice cliff 
contributions to the total ablation rates are also calculated. Uncertainty was calculated at 5% for 
ice cliffs and 7% for supraglacial ponds. 

 

Although supraglacial ponds and ice cliffs account for up to 8 times the mean glacier surface 

lowering, the quantification is complex since ice cliffs also backwaste and energy dissipates beyond 

the pond outlines which is not accounted for, thus the figures in Table 5.6 represent minimum 

contributions.  

 

5.4. Discussion 
5.4.1. Recent and long-term evolution of Miage Glacier 
As previously identified in Chapter 4, these data provide additional detail regarding glacier 

dynamics to assess the evolution of Miage Glacier through a period of continued climate warming 

since 1990 (+1.46°C over the 30–year period, Figure 3.3). Further to the data presented in Chapter 

4, this chapter supports a state of downwasting and reduced velocity since 1990 following the small 

advance during the late twentieth century in response to positive mass balances between the 1960s 

to 1980s as discussed by Thomson et al. (2000) and Smiraglia et al. (2000) and observed elsewhere 

in the Alps (Diolaiuti et al., 2003; Huss, 2012). Over the period 1990 to 2018, these data reveal that 

Miage Glacier has transitioned into ‘Regime 2’, characterised by downwasting ice and glacier 

slowdown, in addition to surface water storage, and expanding debris cover as identified in Chapter 

4.  

In terms of volumetric changes, there has been only modest overall area loss from 1990 to 2018 

(−11%) (Table 4.2), yet there has been continued and pervasive thinning, although the rate of 

thinning appears to have slowed overall (Table 5.5), possibly as a consequence of the expanding 

and suspected thickening debris cover that has the effect of slowing ablation rates. However, the 

most recent results show that the trend of thinning is non-linear, with mass loss of −0.35 ± 0.10 m 

w.e. a−1 between 2012 and 2014, and a higher rate of −0.64 ± 0.20 m w.e. a−1 between 2016 and 

Year 2012 – 2014  2014 – 2016  2016 – 2018  

Ice cliff elevation change (m a−1) −3.77 −3.79 −3.48 

Ice cliff density as % of glacier area 1.07 1.32 0.99 

Ice cliff factor of mean surface lowering 7.39 8.42 4.09 

Ice cliff % of total ablation 7.64 9.1 4.0 

Pond elevation change (m a−1) −4.11 −1.78 −4.55 

Pond density as % of glacier area 0.15 0.21 0.27 

Pond factor of mean surface lowering 8.05 3.96 5.35 

Pond % of total ablation 1.19 0.69 0.58 
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2018 (Table 5.5). In response to this continued thinning across the glacier, the longitudinal gradient 

of the centreline has reduced modestly over the study period from 6.63 to 5.91° (Figure 5.7). 

Furthermore, the valley section from the base of Bionnassay Glacier to the top of the terminal lobes 

has changed very little from 5.21 to 5.15°. Concurrently, Miage Glacier has slowed substantially (by 

~46% on average) from 34 ± 0.05 m a−1 in 1990 to 16 ± 0.05 m a−1 in 2018, with near-stagnant flow 

rates on the terminal lobes (<3 m a−1) (Figure 5.4). 

These observations are broadly consistent with the evolution of debris-covered glaciers elsewhere 

that are experiencing negative mass balances in response to climate change, although with some 

key differences and complexities (e.g. Benn and Lehmkuhl, 2000; Scherler et al., 2011; Benn et al., 

2012; Bolch et al., 2012; Rowan et al., 2015). Reduced flow rates and progressive stagnation are 

being driven by reduced inputs and progressive disconnection from tributary glaciers (exemplified 

by the rapid thinning of Mont Blanc Glacier base where it connects to Miage Glacier; Table 5.5), as 

well as thinning and flattening on the main tongue, which has the effect of reducing shear stress 

and internal deformation rates (e.g. Quincey et al., 2009; Dehecq et al., 2019). Less vigorous flow 

and sustained negative mass balance means that Miage Glacier struggles to evacuate debris that is 

sourced from valley slopes and that melts-out from englacial septa (e.g. Kirkbride and Deline, 2013). 

Consequently, the supraglacial debris cover has progressively thickened and extended further 

upglacier. Progressive thinning, flattening, slowing, and a reduction in the efficiency of meltwater 

evacuation has led to the development of supraglacial ponds and associated ice cliffs in recent years, 

representing localised hotspots of ablation (Figure 5.8 and Table 5.6; (Benn et al., 2012)). 

 

5.4.2. Regional and global comparisons 
The mass balance results presented here highlight the importance of a surface debris cover in 

moderating glacier response to climatic change, but also that debris-covered glacier responses can 

themselves be highly variable. Broadly, the negative mass balance of Miage Glacier is consistent 

with results from other studies in the Mont Blanc massif and the Alps more generally (Paul et al., 

2007; Huss, 2012; Berthier et al., 2014; Rabatel et al., 2016; Vincent et al., 2017; Mölg et al., 2019; 

Zekollari et al., 2020). Between 2003 and 2012, mass loss from Miage Glacier was 19% lower (−0.84 

± 0.22 m w.e. a−1) than the Mont Blanc regional average, which includes a number of clean-ice 

glaciers where rates of mass loss have been higher (Berthier et al., 2014). Across the European Alps 

more broadly, the 1990-2008 mean geodetic mass balance (−0.88 m w.e. a−1; Table 5.5) is similar 

to the mean annual mass balance of −0.83 m w.e. a−1 between 1990 – 2010 calculated from decadal 

means for the Swiss Alps (Huss et al., 2015). 

The presence of a continuous, thick debris cover at Miage Glacier appears to retard mass loss 

compared to nearby clean-ice glaciers, and the most rapid thinning rates are currently focussed 
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around supraglacial ponds and ice cliffs (Sakai et al., 2000; Reid and Brock, 2014; Thompson et al., 

2016; Mölg et al., 2019). Similar to the 1990 – 2018 trend at Miage Glacier, the debris-covered 

Glacier de Tsarmine also exhibited a deceleration of lowering rates since 1999 despite increasing 

air temperatures (Capt et al., 2016). By contrast, Zmuttgletscher in Switzerland, has a thinner and 

less extensive debris cover, and was found to exhibit similar mass loss to clean-ice glaciers; although 

supraglacial ponds were few and their influence on ablation not analysed (Mölg et al., 2019). These 

seemingly contradictory results highlight the complexity of responses to climate change, not just 

when comparing ablation rates of debris-covered glaciers with clean-ice glaciers, but also when 

comparing the responses of different debris-covered glaciers to one another (e.g. Pellicciotti et al., 

2015; Vincent et al., 2016; Salerno et al., 2017).  

The reasons behind the most recent 2016 – 2018 intensification in thinning rates at Miage Glacier 

compared to 2012 – 2014 (from 1990 – 2008 to 2008 – 2018) are unclear (Table 5.5), but the results 

highlight the non-linear nature of ablation of debris-covered glaciers. One possibility is a lagged 

response to temperature and precipitation changes and associated changes in ice flux, as seen 

elsewhere (e.g. Kääb et al., 2012; Senese et al., 2012). Continued monitoring will be required to 

assess to what extent this represents a longer-term trend of enhanced thinning rates, or merely a 

brief deviation. 

The observation that Miage Glacier has slowed over the course of the 1990 – 2018 monitoring 

period is consistent with similar findings from across the European Alps, including Switzerland (Capt 

et al., 2016; Mölg et al., 2019), Austria (Kellerer‐Pirklbauer and Kulmer, 2019), and France (Vincent 

et al., 2009). Likewise, the increasing debris cover at Miage Glacier is similar to that seen since the 

1990s on Zmuttgletscher (Mölg et al., 2019) and on the glaciers of the Ortles-Cevedale Group, Italy 

(Azzoni et al., 2018).  

The recent emergence and growth of supraglacial ponds and ice cliffs on Miage Glacier is a 

particularly striking surface expression of the transition to ‘Regime 2’ of the debris-covered glacier 

evolution model (Benn et al., 2012). These features have played an important role in the glacier’s 

mass balance, and may continue to do so in the future. Specifically, there is a spatial coincidence 

between areas of rapid thinning, reduced velocity at the valley margins, and the locations of ice 

cliffs and ponds (Figure 5.8). These surface features contribute disproportionately to ablation, as 

has been reported for other sites globally (Sakai et al., 2002; Nicholson and Benn, 2006; Immerzeel 

et al., 2014; Pellicciotti et al., 2015; Ragettli et al., 2015; Brun et al., 2016; Thompson et al., 2016; 

Miles et al., 2017a). Mapped ice cliffs between 2016 and 2018 account for up to 8 times the mean 

surface lowering equating to ~4% of total geodetic mass loss yet only account for ~1% of the total 

glacier area, although there has been a reduction in cliff density and contribution to negative mass 

balance since 2012 – 2014 (Table 5.6). Nonetheless, these results are comparable to those of Reid 
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and Brock (2014) who found that ice cliff ablation on Miage Glacier during 2010 – 2011 accounted 

for ~7.4% of total ablation, despite only covering 1.3% of the glacier area. Likewise, at 

Zmuttgletscher, Switzerland, ice cliffs were found to cover up to 1.8% of the debris-covered area, 

yet drove 5% of glacier-wide volume loss (Mölg et al., 2019). However, these figures for glaciers in 

the European Alps are substantially lower than those found on Lirung Glacier, Ngozumpa Glacier 

and Changri Nup Glacier in the Himalaya where ice cliff backwasting accounted for 69%, 40% and 

23% of the total mass loss respectively despite a comparatively small area coverage (2%, 5% and 7% 

respectively) (Sakai et al., 1998; Thompson et al., 2016; Brun et al., 2018). Such disparity between 

the Alpine and Himalayan examples suggest substantial regional variations of contributions of ice 

cliffs to mass loss.  

Supraglacial ponds at Miage Glacier accounted for up to 8 times the glacier-wide mean surface 

lowering and contributed between 0.58 and 1.19% of the geodetic mass loss in the 2012-2018 study 

period, despite only covering between 0.27 and 0.15% of glacier area respectively. These values are 

lower than that contributed by ice cliffs, explained in part by the lower density of ponds across the 

glacier surface (Table 5.6). Although, there are no comparable data on supraglacial pond-related 

glacier ablation in the Alps, by comparison, in the Langtang region of Nepal, up to 12.5% of glacier 

ablation is driven by supraglacial ponds, despite ponds only covering 1.69% of the debris-covered 

area (Miles et al., 2018). This disproportionate ablation rate per unit area coverage is similar in 

magnitude to the 2012 – 2014 values at Miage (Table 5.6; i.e. ablation percentage is around 7.4 to 

7.9 times the percentage of glacier area cover). However, at Miage Glacier, there is an apparent 

slowdown in the contribution of supraglacial ponds to surface lowering and geodetic mass balance 

loss from 2012 – 2014 to 2016 – 2018 (Table 5.6).  

Many ponds on Miage Glacier, and other debris-covered glaciers, are coeval with adjacent ice cliffs 

(e.g. Thompson et al., 2016; Watson et al., 2017a). Together, supraglacial ponds and ice cliffs 

covered between 1.2 to 1.5% of the total glacier area but were typically responsible for a 

disproportionately large amount of the net annual mass loss, ranging from 5 to 10% of the overall 

ablation between 2012 and 2018 (Table 5.6). However, the contribution of supraglacial ponds and 

ice cliffs to the geodetic mass balance is likely to be underrepresented in this study because ablation 

rates distal to these focal points are not quantified. 

 

5.5. Summary 
This study provides an integrated assessment of multi-decadal (1990 – 2018) changes in geodetic 

mass balance, surface velocity, and the roles of supraglacial pond and ice cliff development on 

Miage Glacier, Mont Blanc Massif, Italy. Miage Glacier has transitioned from a period of active flow 

and limited surface water storage during the twentieth century to one of downwasting ice with 
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continued thinning since 1990 (−0.86 ± 0.27 m w.e. a−1) and a dramatic reduction in glacier surface 

velocity from a mean of 34 ± 0.05 m a−1 in 1990 to 16 ± 0.05 m a−1 in 2018. During the observation 

period, Miage Glacier has undergone significant widespread downwasting although surface 

lowering has slowed from −1.07 ± 0.13 m a−1 between 1990 and 2008, to −0.85 ± 0.01 m a−1 between 

2008 and 2018, which is attributed to an expanding debris cover. Despite the long-term negative 

mass balance, recent surface lowering results show a deceleration in thinning indicating complex, 

non-linear changes over time. The presence of supraglacial ponds and ice cliffs serve to enhance 

mass loss locally and were responsible for ~5% of the total mass loss between 2016 and 2018, 

despite only covering 1.3% of the total glacier area. Further exploration and quantification of melt 

rates associated with supraglacial ponds and ice cliffs will provide additional constraint of the 

processes associated. This will be examined in Chapter 6.  

With reference to other studies in the Alps and other high-mountain regions, this study illustrates 

the varied and complex response of debris-covered glaciers to climatic change. In general, Miage 

Glacier is entering a more advanced state of deterioration, although the contributions of ponds and 

ice cliffs to total mass loss are comparably lower than for Himalayan glaciers; Miage Glacier remains 

relatively steep limiting future expansion of supraglacial ponds and their associated ice cliffs. 

Comparisons with debris-covered glaciers in other regions will be examined in Chapters 7 and 8. 
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Chapter 6 : Morphological analysis of glacial lakes and ice cliffs 
6.1. Introduction 
Glacial lakes have been identified as loci of enhanced glacier ablation and have been highlighted in 

Chapter 5 as an important component of the mass balance of Miage Glacier (e.g. Sakai et al., 2002; 

Nicholson and Benn, 2006; Immerzeel et al., 2014; Pellicciotti et al., 2015; Ragettli et al., 2015; 

Thompson et al., 2016; Miles et al., 2017a). Thus, monitoring glacial lake development, and the 

contribution to glacier mass loss is important to assess future impacts and contributions to debris-

covered glacier dynamics and evolution.  

Although supraglacial ponds and ice cliffs exhibited up to 8 times the mean glacier surface lowering, 

the quantification of this value is complex. Ice cliffs also backwaste in addition to surface lowering 

and energy dissipates beyond the pond outlines, which was not previously accounted for, thus the 

figures in Chapter 5 are considered to represent minimum contributions. Therefore, to further 

explore the influence and dynamics of supraglacial ponds and ice cliffs at Miage Glacier, 

bathymetric and photogrammetry surveys undertaken in 2017 and 2018 examined the evolution of 

five supraglacial ponds and Lake Miage, and their associated ice cliffs to reveal additional details of 

how important these features might be for the evolution of Miage Glacier. This chapter utilises 

photogrammetry surveys and Structure from Motion (SfM) workflows to determine ice cliff 

evolution alongside bathymetric surveys of adjacent ponds at Miage Glacier in 2017 and 2018. 

Specifically, this chapter (i) quantifies water storage change at the glacier surface and margins 

between 2017 and 2018; (ii) quantifies ice loss associated with the presence of supraglacial ponds 

and ice cliffs; and (iii) considers the development and evolution of surface features at Miage Glacier. 

 

6.2. Methods 
Bathymetric and photogrammetry surveys were undertaken in June/July 2017 that included four 

supraglacial ponds (S1 – S4), Lake Miage and three proglacial lakes (P1 – P3) with repeat surveys 

carried out June/July 2018 on three of the same supraglacial ponds (S1 – S2 and S4) and one 

additional pond (S5), and Lake Miage and proglacial lakes (Figure 6.1). The methods utilised for the 

bathymetric surveys, and photogrammetry surveys and quantification of change will be discussed 

in turn.  
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Figure 6.1: A: Location of Miage Glacier and the glacial lakes surveyed. Black box represents area in 
B: glacial lakes and ice cliffs present in 2017 and 2018.  

 

6.2.1. Bathymetric surveys 
Bathymetric surveys of the ice-marginal lake (Lake Miage), three proglacial lakes (P1 – P3) and five 

supraglacial ponds (S1 – S5, Figure 6.1) were undertaken in July 2017 and July 2018. A Seafloor 

Systems Hydrone remote control bathymetric survey boat with an Ohmex SonarMite BTX v4/5 echo 

sounder, with a reported accuracy of ±0.0025 m, was used wherever ponds with depths were 

sufficient to accommodate the survey boat. Although smaller ponds were present (<10 observed), 

they were too shallow to survey with the boat. 

 

The level of the water edge, where accessible, was surveyed with a Trimble Geo7x GNSS and post-

processed. RINEX data were collected from the base station in Morgex (<25 km from the glacier) to 

post-process the datasets. All GNSS data were post-processed to improve the accuracy. Lake and 

pond extents were accurate to a mean XYZ positional accuracy of ±0.06 m; however, due to the 

obscured view of the sky by the ice cliffs, some points during the bathymetric survey recorded a 

lower accuracy, but were not excluded from the datasets to ensure a complete coverage. All points 

recorded an accuracy of <1.5 m with the exception of the S4 2017 survey which recorded some 

points with a maximum accuracy of 4.8 m. 

The GNSS unit and echo sounder were attached to the bathymetric survey boat enabling 

morphometric analysis of the lake and pond beds. The Ohmex SonarMite and Airmar P66 

transducer are able to detect depths ranging from 0.3 – 75 m. The transducer operates at an output 
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range of 2 Hz with an ultrasonic ping rate of 3 – 5 Hz dependent on water depth. The biggest source 

of measurement error is attributed to the sound velocity setting. The sound velocity can be set from 

1400 to 1600 ms−1. Cold, fresh water, typically found in glacial lakes, ranges between ~1403 to 

1427 ms−1 (Purdie et al., 2016). Sound velocity was set according to the temperature of the surface 

water taken with a temperature probe and based on the UNESCO equation provided by the 

National Physical Laboratory to set the appropriate value (Chen et al., 1977). Temperature profiles 

taken in 2018 indicated variations of supraglacial pond surface and depth temperatures at the lake 

bed varied by less than 1.2°C, whereas proglacial lakes indicated substantially higher variability (0.3 

– 11.7°C). This equates to a change in sound velocity of between 1.9 to 2.5 ms−1 and is considered 

to have a negligible affect on the depth measurements for this study. The effect to which turbidity, 

salinity and sediment concentration have on the sound velocity are again assumed to be negligible 

(Chikita et al., 2000). Comparison with a measured point over a static location, with a known depth 

to a flat, firm base at the edge of the water was used to check the sound velocity settings and adjust 

accordingly for each survey. Verification points were limited to shallow areas (<1 m depth) where 

access was possible and indicated readings were within ±5 cm of the measured sonar depth.  

The bathymetric survey boat collected two to three depth measurements per second, travelling at 

an average speed of 1.5 ms−1. Survey point summary and errors are provided in Table 6.1. For each 

survey, water level points were taken with the Trimble GNSS and included in the bathymetric 

interpolation to improve area and volume calculations. It was not possible to collect water 

level/edge points where ice cliffs were present, so SPOT imagery and the photogrammetric models 

(see Section 6.2.2) were used to delineate the extent of ponds along the ice cliffs. Although previous 

studies have adopted a natural neighbour approach (e.g. Thompson et al., 2016; Watson et al., 

2018b), three interpolation methods were tested and the accuracy of predictions assessed using a 

root mean square error (RMSE) between the raw sonar depths and the interpolated depths. Out of 

the natural neighbour, IDW and spline algorithms tested, IDW produced the lowest estimates whilst 

enabling preservation of data measurements and was therefore adopted in this study. A suitable 

output resolution was assessed in ArcGIS based on the mean distance between points and resulted 

in maps ranging in resolutions from 0.05 m to 0.4 m.  
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Table 6.1: Number of depth measurements, mean XY GNSS accuracy and RMSE for the IDW 
interpolations for the bathymetric maps.  

Lake Number of depth 
measurements 

Mean XY GNSS 
Accuracy (m) 

Mean 
interpolation 
standard error 
(RMSE) 

Lake Miage – Ice-marginal 
lake  

2017 
2018 

8149 
4007 

0.022 
0.367 

0.390 
0.344 

Proglacial lake 1 – P1 2017 
2018 

5783 
6052 

0.024 
0.191 

0.108 
0.113 

Proglacial lake 2 – P2 2017 
2018 

1224 
1723 

0.040 
0.024 

0.046 
0.101 

Lac Vert – P3 
 

2017 
2018 

4025 
1986 

0.461 
0.364 

0.065 
0.069 

Supraglacial pond 1 – S1 
 

2017 
2018 

5059 
1735 

0.026 
0.048 

0.438 
0.134 

Supraglacial pond 2 – S2 2017 
2018 

3256 
1217 

0.023 
0.027 

0.764 
0.853 

Supraglacial pond 3 – S3 2017 
2018 

2032 
- 

0.020 
- 

0.129 
- 

Supraglacial pond 4 – S4 2017 
2018 

2420 
850 

0.280 
0.019 

0.030 
0.076 

Supraglacial pond 5 – S5 2017 
2018 

- 
1879 

- 
0.021 

- 
0.488 

 

6.2.2. Photogrammetry surveys 
Ground based photogrammetry surveys were limited to supraglacial ponds with adjacent ice cliffs 

and undertaken in clear weather conditions. Ice cliffs were also observed elsewhere on the glacier 

but did not have associated supraglacial ponds and were not surveyed. 

Each ice cliff survey typically took <2 hours, with between 126 to 415 images dependant on cliff size 

and extent of undulating topography. Images were taken with a Sony Alpha 7R camera, with a fixed 

focal length lens (35 mm) and 42-megapixel sensor. A range of ground-based camera locations with 

oblique angles were used to provide good coverage of the ice cliff, water edge and surrounding 

areas. The required image overlap for SfM with multi view stereopsis (SfM-MVS) image processing 

was visually assessed. Identifiable A3 paper sized fluorescent yellow and orange ground control 

points (GCPs) with a central black marker were distributed at various heights and locations to 

encompass the survey area. Positions of the GCP targets were recorded with the Trimble Geo7x 

GNSS and post-processed with a mean accuracy of ±0.03 m.  

Photos of the ice cliffs were processed using SfM-MVS workflows in Agisoft Photoscan to create 3D 

representations of the ice cliffs as point clouds (e.g. Westoby et al., 2012). Processing followed the 

in-built workflows in Agisoft prior to export. Photos were aligned and those with a low-quality value 

(<0.7) were removed from the model based on quality estimations and visual checks. Once a sparse 



Page | 93  
 

point cloud was processed, outliers from the area of interest were removed, retaining the 

maximum number of points with an acceptable error (<1 pixel). A dense point cloud was processed 

with ‘high quality’ settings. Georeferencing accuracy was <0.08 m and 3D GCP placement 

uncertainty was typically <0.04 m (Table 6.2). The resultant models showed some areas that could 

not be resolved due to sparse imagery coverage or unfavourable slope angles including channels 

transporting meltwater to the supraglacial pond from adjacent ice cliffs. Regions within gullies did 

not receive high camera coverage and are therefore not well defined in the resulting models. A 

total of six GCPs were used for each model to reduce vertical errors (Tonkin and Midgley, 2016). 

Control and check points were used to assess the resulting models and are reported in Table 6.2.  

The models were exported as 3D point clouds along with orthophotos and DEMs for further analysis 

in ArcGIS and CloudCompare. The models were analysed to calculate ice cliff area (calculated as the 

exposed surface), maximum ice cliff height, slope and aspect. Surface area of the ice cliff was 

calculated as the exposed surface. Slope and aspect were calculated using the dip direction and 

angle tools within CloudCompare.  

 

Table 6.2: Errors of the photogrammetry SfM ice cliff models during processing and summary of 
GCPs, check points and accuracy.  

Lake or pond Resolution 
mm/pix 

Georeferencing 
XYZ 
uncertainty 
(m) 

Mean 
point 
density 
(per m2) 

No. 
control 
GCPs 

RMSE – 
control 
(m) 

No. 
check 
points 

Accuracy 
– check 
(m) 

S1 
2017 
2018 

3.58  
2.09  

0.028 
0.028 

5.9 x 104 

4.0 x 104 

6 
6 

0.04 
0.06 

3 
7 

0.05 
0.06 

S2 
2017 
2018 

5.28  
3.69  

0.026 
0.034 

2.2 x 104 

3.7 x 104 
6 
6 

0.02 
0.03 

13 
11 

0.05 
0.06 

S3 
2017 
2018 

1.84  
1.47  

0.026 
0.032 

1.7 x 105 

1.5 x 104 
6 
6 

0.02 
0.03 

12 
8 

0.05 
0.06 

S4 
2017 
2018 

3.31  
2.59  

0.027 
0.026 

6.6 x 104 

1.1 x 105 
6 
6 

0.02 
0.07 

3 
7 

0.08 
0.07 

S5 
2017 
2018 

- 
3.50  

- 
0.032 

- 
4.5 x 104 

- 
6 

- 
0.07 

- 
7 

- 
0.08 

Miage 
2017 
2018 

12.1  
8.90  

0.030 
0.028 

3.4 x 103 

6.6 x 103 
6 
6 

0.02 
0.03 

17 
20 

0.05 
0.06 

 
 

6.2.3. Quantification of change 
6.2.3.1. Photogrammetric ice cliff models 
The SfM model point clouds were aligned based on identifiable boulders to account for 

displacements between the two surveys in 2017 and 2018 except for Lake Miage which originates 

on stable ground at the western margin. Once co-registered, ice cliff change was quantified using 

the Multiscale Model to Model Cloud Comparison (M3C2) cloud-to-cloud differencing method in 
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CloudCompare as this method has been shown to be effective for determining change in river 

canyon and glacial environments based on the methods described by Lague et al. (2013), Westoby 

et al. (2016), Midgley and Tonkin (2017), Watson et al. (2017b) and Bash et al. (2018). This method 

enables quantification of the 3D distance of two point clouds along the normal surface direction, 

by calculating distances from a reference point cloud (cloud 1) to a target point cloud (cloud 2) 

(Lague et al., 2013).  

The M3C2 method requires suitable selection of two user-defined parameters (the normal scale 

and projection scale) dependent upon the point clouds. The normal scale (D) is used to calculate 

surface normals dependent upon surface roughness and point cloud geometry. The projection scale 

(d), refers to the cloud-to-cloud distance the calculation is averaged across. It should be large 

enough to include an average of ~30 points (Lague et al., 2013; Watson et al., 2017b). Following 

approaches from Westoby et al. (2016), Midgley and Tonkin (2017), Watson et al. (2017b) and Bash 

et al. (2018), the normal scales (D) were estimated based upon a trial and error approach (Equation 

6.1) through refinement of a rescaled measure of the normal scale n(i):  

𝑛𝑛(𝑖𝑖) = 𝐷𝐷
𝜎𝜎𝜎𝜎(𝐷𝐷)

         Equation 6.1 

Where n(i) is the normal scale (D) divided by the roughness (σ) measured at the same scale around 

i. The roughness scale was reiterated until n(i) was between 20 -25 to ensure the calculation is not 

influenced by local surface roughness and thereby the estimated normal error (Enorm) was <2% 

(Lague et al., 2013). For this study, the normal scales (D) ranged between 0.6 m and 1.0 m and the 

projection scale (d) was set at 0.3 m to ensure a minimum of 30 points were sampled in each cloud 

as suggested by Lague et al., (2013).  

The Level of Detection (LoD) threshold for a 95% confidence level indicates whether the calculated 

change is significant based on local roughness, the number of points within the cylinder, and the 

registration error. The registration error was set to the point cloud errors inclusive of SfM 

reconstruction and GNSS errors and previously assessed in Agisoft. Significance values equal to 1 

indicate areas where the confidence interval exceeds 95% and was satisfied for the ice cliff faces.  

Distance calculations were clipped to the ice cliff faces. Retreat rates were calculated for the survey 

period between 2017 and 2018. Ice cliffs at Lake Miage were separated into the north and south-

facing sections to improve point detection with the M3C2 algorithm. Total errors were calculated 

for each ice cliff model using the georeferencing errors and displacement error between the two 

corresponding surveys.  
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6.2.3.2. Bathymetric surveys 
Once the photogrammetry SfM models were co-registered based on identifiable boulders and 

features, the bathymetric lake surveys were also aligned enabling regions of morphological bed 

change to be assessed. Raster differencing indicates the regions of depth increase and decrease.  

 

6.3. Results 
6.3.1. Glacial lakes bathymetry   
Of the water bodies surveyed in both 2017 and 2018 (all except S5), volume increased from 

174,047 m3 to 248,951 m3 (Table 6.3, Table 6.4). Supraglacial ponds increased in volume by +46% 

(inclusive of S5), proglacial lakes by +59% and the ice-marginal Lake Miage by +42% between 2017 

and 2018. 

The supraglacial ponds and Lake Miage show fluctuations in volume and area between the two 

surveys with the Lake Miage, S1, and S5 experiencing volume increases, whilst S2, S3 and S4 

underwent volume decreases (Table 6.3). S3 drained completely between 2017 and 2018, which 

appears to be associated with a crevasse observed in this location in 2018 that the pond previously 

occupied in 2017. The supraglacial ponds and Lake Miage surveyed in 2017 and 2018 represent a 

pond density of 0.3 and 0.4% respectively of the debris-covered area, and although they 

experienced variations in volume, their total water volume increased by 50,924 m3.  
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Table 6.3: Area, depth, lake levels and volume of lakes surveyed July 2017 and 2018. *S5 area in 
2017 estimated from satellite imagery rather than bathymetric survey.  

 Year Area (m2) Max. depth (m) Lake level 
elevation (m) 

Volume (m3) 

Lake Miage – Ice-marginal  2017 11931 36.94 2007.60 119968 
 2018 16028 30.56 2009.81 170354 
Proglacial lake 1 (P1) 2017 8535 12.86 2007.60 36976 
 2018 10757 16.12 2009.80 58409 
Proglacial lake 1 (P2) 2017 412 1.29 2012.60 297 
 2018 880 2.27 2013.50 736 
Lac Vert (P3) 2017 1516 6.02 1815.90 3213 
 2018 1904 4.67 1816.38 5318 
Supraglacial pond 1 (S1)  2017 1495 13.30 1964.30 7600 
 2018 1989 16.68 1962.50 11426 
Supraglacial pond 2 (S2) 2017 569 26.73 2030.20 3112 
 2018 500 16.80 2026.65 2384 
Supraglacial pond 3 (S3) 2017 232 4.18 2049.20 298 
 2018 - - - - 
Supraglacial pond 4 (S4) 2017 698 14.05 2054.60 2585 
 2018 207 5.27 2048.40 323 
Supraglacial pond 5 (S5) 2017 1464* - - - 
 2018 1488 21.61 2044.48 5781 

 

Lake Miage increased in both area and volume from 2017 to 2018, expanding from 11,931 m2 to 

16,028 m2
, equating to ~68% of the surface water storage at Miage Glacier despite a reduction in 

maximum depth of 6.38 m. The deepest section was located in the centre of the lake, however a 

deep section evident in 2017 further developed by 2018 close to the north-facing ice cliffs. The east 

end of the lake shows the greatest deepening close to the ice cliffs in comparison to the western 

end, which shows comparatively little change proximal to the lateral moraines (Figure 6.2).  

Lake Miage neighbours two proglacial lakes situated to the south and southwest (Figure 6.2). The 

larger of the proglacial lakes (P1) has a submerged ridge, which separates the two basins when 

water levels are lower than during the field visits. Water levels, taken with the GNSS, were the same 

for both Lake Miage and P1 in 2017 and 2018. The smaller proglacial lake located close by (P2), 

however, did not show the same water level increase between 2017 and 2018. The total volume 

for these three lakes combined was 157,240 m3 in 2017 and 229,500 m3 in 2018 equating to 90% of 

the total surface water storage, in accordance with higher water levels for all three lakes and areal 

expansion of Lake Miage.  
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Figure 6.2: Bathymetric maps of Lake Miage, P1, P2 and Lac Vert (P3) in 2017 and 2018. Background 
images are SPOT satellite images from 2017 and 2018, and TerraItaly OrthoPhoto from 2015 (P3).  

 

A drainage event of Lake Miage occurred in September 2018 with photographic evidence showing 

substantial volume loss (Figure 6.3). It is understood that the drainage occurred over the course of 

a few days between approximately 25/09/2018 and 29/09/2018 resulting in the reduction of the 

water level from the notch line, identifiable in the image via a conduit at the eastern end of the 

lake. The lake drained an estimated ~102,000 m3 based on the assumption the bathymetry 

remained stable since the survey in the previous July.  
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Figure 6.3: Lake Miage taken on 29/09/2018 facing east looking towards Val Veny. Blue line refers 
to the previous water line. Photo credit: Connor Downes (2018).  

 

The supraglacial ponds (S1 – S5) held a volume in excess of 13,595 m3 in 2017 and ~20,000 m3 by 

2018 accounting for 8% of the total volume stored at Miage Glacier surface (Table 6.3). All 

supraglacial ponds showed a decrease in water levels between the two surveys. S1 had the largest 

area and experienced an increase in both area and volume over the survey period (Figure 6.4). S2 

possesses a very deep section of 26.73 m, which happens to be the greatest depth of all supraglacial 

ponds surveyed in 2017, albeit with a comparatively small area. S2 underwent a reduction in both 

area and volume by 2018 consistent with a reduction in maximum depth of ~10 m. S3 experienced 

a reduction in area and volume due to its complete drainage by 2018. S4 also showed signs of 

drainage resulting in a substantial depth decrease of ~9 m, and area reduction. By 2018, S4 was 

approximately a third of the area it was in 2017 indicating substantial drainage. S5 surveyed in 2018 

showed a deep channel along the centreline of the pond with the deepest section measuring >21 m. 

S5 showed limited area change based on satellite imagery from the study period in 2017, but is 

thought to have increased in depth enabling bathymetric surveys to be undertaken in 2018.  
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Table 6.4: Changes in lake properties from 2017 to 2018. Values for Lake Miage post drainage are 
estimated assuming the bathymetry has not changed since the 2018 survey.  

 Area (m2) Max. depth (m) Lake level (m) Volume (m3) 
Lake Miage – Ice-marginal lake +4097 −6.38 +2.21 +50387 
Lake Miage – Post drainage (estimated) −8421   −101843 
Proglacial lake 1 (P1) +2222 +3.25 +0.90 +21434 
Proglacial lake 2 (P2) +468 +0.98 +2.20 +440 
Lac Vert (P3) +388 −1.34 +0.48 +2106 
Supraglacial pond 1 (S1) +493 +3.38 −1.80 +3826 
Supraglacial pond 2 (S2) −69 −9.93 −3.55 −728 
Supraglacial pond 3 (S3) - - - - 
Supraglacial pond 4 (S4) −491 −8.78 −6.20 −2262 
Supraglacial pond 5 (S5) - - - - 
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Figure 6.4: Left column A1-E1: Mean annual elevation change from 2016 – 2018 derived in Chapter 
5. Central column A2-E2: Bathymetry and photogrammetry surveys in 2017 with SPOT7 orthophoto 
background. Right column A3-E3: Bathymetry and photogrammetry surveys in 2018 with SPOT7 
orthophoto background. 
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6.3.2. Ice cliff characteristics 
All ponds were surrounded partly by north-facing cliffs (Figure 6.4). Part of the ice cliff surrounding 

Lake Miage, also faced a southerly direction, which was observed with a lower slope gradient (8 – 

10°) in comparison to the north-facing slope (26 – 29°) in both the 2017 and 2018 surveys (Table 

6.5).  

Table 6.5: Summary of 2017 and 2018 ice cliff geometry results.  

Model Max. height of ice 
cliff (m)  

Surface Area 
(m2) 

Aspect 
(°) 

Mean (max) 
slope (°) 

Lake Miage (N/S) 2017 32.29 10406 336/162 26/8 
 2018 42.22 11615 338/154 29/10 
S1 2017 26.64 2346 358 23 
 2018 29.6 1692 356 29 
S2 2017 13.24 943 35 10 
 2018 18.29 1807 57 16 
S3 2017 4.79 165 22 2 
 2018 - - - - 
S4 2017 15.76 1055 325 12 
 2018 15.40 864 277 6 
S5 2017 - - - - 
 2018 24.8 1728 283 18 

 

Ice cliff heights ranged from ~5 m (S3) to ~42 m (Miage) over the two surveys. Between 2017 and 

2018, the Lake Miage ice cliff exhibited an increase in surface area from 10,406 m2 to 11,615 m2 

(Table 6.5). The Lake Miage ice cliff showed a strong increase in surface area of the north-facing 

section. The ice cliff at S1 shows a reduction in surface area (2346 – 1,692 m2) despite an increase 

in height (26.6 – 29.6 m). S2 ice cliff increased in surface area (943 – 1,807 m2) but maintained a 

relatively stable aspect and slope angle. S3 ice cliff had disappeared with no sign of exposed ice in 

2018. Ice cliff S4 maintained a stable height although the eastern-facing side of the S4 ice cliff was 

observed to have partially collapsed, consistent with a reduction in mean slope angle (12 to 6°). S5 

showed a relatively large ice cliff in excess of 24 m in height.  

 

6.3.3. Supraglacial pond morphology and cliff interactions 
Displacements of identifiable rocks indicate the glacier velocity is approximately 10 – 15 ma−1 in the 

regions surrounding the supraglacial ponds. As the S1 ice cliff retreated, the pond expanded 

upglacier (Figure 6.4A). The deepest section of the pond is located to the north edge below the ice 

cliff. S2 pond has undergone a decrease in area attributed to undercutting to the east of the ice cliff. 

The deepest section of the pond has remained beneath the north-facing section of ice cliff (Figure 

6.4B). S3 showed significant drainage but a small amount of water is located where it is thought the 

deepest section of the pond was previously. Presence of a crevasse can be traced through the area 
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in 2018 where S3 was previously located (Figure 6.4C). S4 also reduced in size and is confined to 

the base of ice cliff by 2018. It is likely that the reduction in pond area and volume has reduced in 

association with the partial collapse of the ice cliff (Figure 6.4D). S5 pond increased in area and 

depth and was, therefore, suitable for surveying in 2018. Again, the deepest section of the pond 

was observed under the large exposed ice cliff (Figure 6.4E).  

 

6.3.4. Quantification of ice cliff change  
The ice cliffs retreated substantially ranging from −0.93 ma−1 to −8.15 ma−1 (Table 6.6), equating to 

a total volumetric ice loss of 39,569 m3 between 2017 and 2018. The highest ice cliff retreat rates 

occurred around the margins of S4 (−8.15 ma−1) and S1 (−5.24 ma−1) respectively (Table 6.6, Figure 

6.5), particularly around north-facing slopes. The northern-facing Lake Miage ice cliffs experienced 

higher melt rates in comparison to the southern-facing cliff and was observed to have migrated 

further onto the glacier. 

 

Table 6.6: Mean ice cliff retreat rates between 2017 and 2018 assessed through the M3C2 
algorithm. 

Lake Mean M3C2 
distance (m) 

St 
Deviation 
(m) 

Mean annual 
retreat rate 
(m) 

Volume ice 
lost (m3) 

Mean daily 
retreat rates 
(cm d-1) 

Total Error 
(ET) (m) 

Miage N −2.70 2.62 −2.79 14048 
 

−0.76 0.26 

Miage S −0.91 2.35 −0.93 1067 −0.26 0.26 
S1 −5.12 3.72 −5.24 12011 −1.44 0.83 
S2 −2.41 2.44 −2.47 4077 −0.68 1.00 
S3 - - - - - 1.05 
S4 −7.93 1.69 −8.15 8366 −2.23 1.01 
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Figure 6.5: A-F: Ice cliff and bathymetric change between the two survey periods in 2017 and 2018. 
Units in m. Photogrammetry models displayed for context.  

 

6.3.5. Ablation season pond dynamics 
Ablation season pond dynamics show increased pond numbers at the beginning of the season, 

which then reduce, as such the total ponded area reduced from 25,556 m2 to 6,069 m2 in 2017 with 

similar levels in 2018 (Figure 6.6 and Table 6.7). In both years, an increase of pond number and 

area/volume was calculated in August, which then decreased in the following September and 

October.  

The estimated volumes in Table 6.7 were calculated from the Watson et al. (2018b) updated area-

volume relationship with additional small supraglacial ponds from Cook and Quincey’s (2015) 

relationship as in Equation 6.2. 

𝑽𝑽 = 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟑𝟑𝟑𝟑        Equation 6.2 
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Table 6.7: Summary of ponds mapped throughout the ablation season from 2017 – 2018. 

Date Number of ponds Area (m2) Estimated volume 
(m3) 

June 2017 11 26556 216618 
July 2017 9 28514 239133 
August 2017 9 34285 308961 
September 2017 5 8519 44601 
October 2017 7 6069 27838 
June 2018 11 39399 374829 
July 2018 9 36944 342763 
August 2018 11 38574 363964 
September 2018 11 32208 283255 
October 2018 8 6958 33664 

 

Lake Miage drained at the end of the ablation seasons in both 2017 and 2018 in September/October. 

The months preceding the drainage show signs of increasing area and growth.  
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Figure 6.6: Water bodies at Miage Glacier from June – October 2017 (top row) and June – October 2018 (bottom row).  
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6.4. Discussion 
6.4.1. The evolution of Miage Glacier 
The first-order DEM-differencing technique as discussed in Chapter 5 provides an indication of 

contribution to mass balance but cannot capture the full range of ice cliff and pond dynamics. The 

field-based photogrammetry and bathymetric surveys presented in this chapter, reveal a detailed 

understanding of Miage Glacier evolution. The data presented in Chapters 4 and 5 reveal that Miage 

Glacier has transitioned into ‘Regime 2’, characterised by expanding debris cover, downwasting ice 

and glacier slowdown, in addition to perched ponds and associated enhanced ablation around the 

ponds (Benn et al., 2012). The transition to ‘Regime 3’ requires the development of base-level lake 

often in combination with an elevated hydrological base associated with large terminal moraines, 

which is not evident at Miage Glacier (Quincey et al., 2007). Thus, it is unlikely for the glacial lakes 

at Miage Glacier to develop a hazardous GLOF risk (Benn et al., 2012) and is likely to remain in 

‘Regime 2’ for the foreseeable future. However, the presence of supraglacial ponds and ice cliffs 

provide evidence of rapid mass loss and are important contributors to the glacier dynamics and the 

overall melt budget.  

Furthermore, this study contributes to the global bathymetry dataset of small supraglacial ponds, 

which have been seldom analysed, especially in alpine regions (Cook and Quincey, 2015). GNSS 

accuracy has been reported for the bathymetry data for the first time providing assessment of the 

spatial accuracy of the bathymetric surveys along with analysis of interpolation methods used. 

Although there is potential for additional water storage in undercut cliff sections, these were not 

accessible with the survey boat and interpolated data is considered to provide a conservative 

estimate.  

 

6.4.2. Glacial lake variability and pond dynamics 
Glacial lakes have increased in number worldwide since 1990 in response to climatic change and 

glacier retreat and is evident in the Alps (Shugar et al., 2020). Glacial lakes, including supraglacial 

ponds, are likely to become increasingly important for both ablation and water storage in the Alps 

(Gobiet et al., 2014). The supraglacial ponds comprise a relatively small (~8%), yet important, 

component of the total water storage at Miage Glacier (Table 6.4), and play an important role in 

glacier-scale ablation. In one year, the total volume of surface water storage at Miage Glacier has 

increased by 50,924 m3 (46%) (Table 6.3 and Table 6.4) despite evidence of drainage events, 

highlighting the potential for rapid increase but also high intra and inter-annual variability (e.g. 

Miles et al., 2017b). High rates of variability likely represent a combination of snowmelt and 

meltwater generation (Gardelle et al., 2011), interactions with englacial conduits and drainage 

events (Gulley and Benn, 2007), and precipitation inputs (Liu et al., 2015).  
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Long-term trends indicate an overall increase in the number of small ponds (Figure 4.6), yet 

seasonal variations reveal summer growth and maximum ponded area likely in response to 

seasonal controls on temperature, precipitation and surface hydrology and thus also often 

coincides with sporadic drainage events (Watson et al., 2016). During the ablation season, higher 

numbers of small ponds account for increasing area with a maximum size in the middle of summer 

storing increased thermal energy (Miles et al., 2018), which often promotes further meltwater 

production and pond expansion prior to drainage, once it encounters an englacial conduit or 

drainage route. A reduction in ponded area and number was observed prior to winter in a similar 

cyclical pattern previously observed by Miles et al. (2017b), Narama et al. (2017) and Watson et al. 

(2016). Despite these examples being influenced by the Himalayan monsoon, similar trends are 

observed with the seasonal ablation season at Miage Glacier highlighting the importance of 

summer temperatures as the predominant factor in meltwater generation and potential for 

englacial ablation and interception with englacial conduits resulting in drainage events (Gulley and 

Benn, 2007; Miles et al., 2016).  

Despite increased supraglacial pond volume (S1 – S5), which held a volume in excess of 13,595 m3 

in 2017 and ~20,000 m3 by 2018, only one pond observed a clear increase in pond depth (Table 6.4). 

Cook and Quincey (2015) hypothesised that supraglacial ponds initially grow by area at a faster rate 

than by depth via subaqueous melt. Supraglacial ponds are typically short-lived once a link to the 

englacial perennial system has formed allowing them to drain, as seen with S3 through interception 

with a crevasse (Figure 6.4), and later refill. If no connection to the englacial drainage system is 

made, rapid growth has been attributed to subaerial and water-line melting (Benn et al., 2001) 

enabling areal growth as seen with S1 and S5. Thus, volume increase for supraglacial ponds at Miage 

Glacier is primarily attributed to areal expansion rather than subaqueous bed melt, supporting Cook 

and Quincey (2015).  

The surveyed supraglacial ponds and Lake Miage all had adjacent ice cliffs and reached a maximum 

depth of 37 m at Lake Miage in a region where ice thickness ranges from 0 to >95 m. The 

supraglacial ponds were present in regions with ice thickness >100 m (Farinotti et al., 2019). It is 

considered that Lake Miage has a relatively thick sediment layer on its bed as partially evident in 

Figure 6.3. Thus, enhanced ablation and expansion is promoted around the ice cliffs and regions of 

thinner debris. Similar expansion processes were observed at Spillway Lake (Thompson et al., 2012) 

and supports drainage via an englacial conduit located at the eastern end of the Lake Miage.  

 

6.4.3. V-A scaling relationships 
This study has shown the development of small supraglacial ponds, which have become established 

on Miage Glacier are important for glacier dynamics and glacier-scale ablation. Yet, the inclusion of 
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small supraglacial ponds (<10,000 m2) is limited in global bathymetric datasets (Watson et al., 2016), 

which glacier melt models require for accurate inclusion of glacier evolution. Area-depth 

relationships of the ponds and lakes at Miage Glacier indicate a power law relationship based on 

coefficient of determination (R2) values between supraglacial ponds and proglacial lakes at Miage 

Glacier (Table 6.8). In comparison, area-volume relationships are best represented by a linear 

relationship between supraglacial ponds at Miage Glacier (Table 6.8). When combining these data 

points with those of Cook and Quincey’s (2015) and Watson et al.’s (2018b) area-volume 

assessments, the pond area-volume power law and exponential relationships as previously stated 

are supported.  

 

Table 6.8: Regression values (R2) relationships for supraglacial ponds and proglacial lake area-
volume and comparisons with data from Cook and Quincey (2015) and Watson et al. (2018b).  

 Linear 
R2 

Exponential 
R2 

Power 
law 
R2 

Supraglacial ponds – area-depth (2017 and 2018) 0.43 0.42 0.64 
Proglacial lakes – area-depth (2017 and 2018) 0.90 0.72 0.90 
Supraglacial ponds – area-volume (2017 and 2018) 0.99 0.75 0.94 
Proglacial lakes – area-volume (2017 and 2018) 0.00 0.07 0.13 
Supraglacial ponds area-volume (incl. Cook and Quincey, 2015; 
and Watson et al., 2018 data).  

- - 0.99 

Proglacial/moraine dammed area-volume (incl. Cook and 
Quincey, 2015 data). 

- 0.96 - 

All glacial lakes area-volume (incl. Cook and Quincey, 2015; and 
Watson et al., 2018) 

- - 0.98 

 

 

In addition, Cook and Quincey (2015) found that supraglacial ponds formed a distinct population 

when comparing their mean depth and area with other, larger glacial lakes. However, at Miage 

Glacier, supraglacial ponds were much deeper in relation to their area compared to the proglacial 

and ice-marginal lakes (Figure 6.7). It was suggested that supraglacial pond volume increases at a 

slow rate with increased area due to being relatively shallow; however, this appears not to be the 

case at Miage Glacier. This is consistent with higher rates of expansion and drainage of these lakes 

and compares to Cook and Quincey’s (2015) description of more mature supraglacial ponds where 

lake volume increases more rapidly, with increased calving rates associated with deeper water as 

the lake-bottom ice melts out. However, the ponds on Miage Glacier are considered to represent 

comparatively immature ponds and therefore lake development may not be consistent with other 

studies and could take on any of the trajectories suggested in Cook and Quincey’s (2015) analysis.  
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Figure 6.7: Lake and pond area plotted against mean depths for 2017 and 2018 surveys. 

 

6.4.4. Ice cliff dynamics 
Photogrammetric surveys undertaken in 2017 and 2018 show that ice cliff backwastage resulted in 

an annual ice loss of 39,569 m3 for the five ice cliffs surveyed, which accounted for 0.3 – 0.4% of 

the debris-covered area with ice cliff retreat rates up to −8.15 m a−1 (Table 6.6). However, 

considerable variations in ice cliff retreat was observed (Figure 6.5) and often associated with 

vertical runnels (e.g. S1, S2), or cliff degradation (e.g. S4).  

Analysis of the ice cliffs associated with supraglacial ponds supports earlier work of Reid and Brock 

(2014) whereby higher melt rates were observed at the top of ice cliffs compared to the lower 

slopes which are sheltered from wind-induced turbulent heat fluxes (Figure 6.5). They found that 

as the cliff tops melt quicker, the development of a shallower slope profile accumulates debris and 

led to lowered albedo further enhancing cliff decay. For example, S4 appears to be have 

disintegrated having retreated by a mean of −8.15 m a−1 consistent with a reduction in slope (12 - 

6°) (Table 6.6). Additionally, the S1 ice cliff indicates a central band associated with a change in 

slope, which underwent retreat rates in excess of −9 m a−1 compared to the mean rate of 

−5.24 m a−1 (Table 6.6) via subaerial melt. Higher rates of retreat at the top of the ice cliff are 

consistent with slope lowering compared to lower rates observed below the ridge.  

Ice cliffs have been observed to preserve for a number of years on Miage Glacier including one 

observed for 8 years by Reid and Brock (2014). S1 has been present in satellite imagery for 6 years, 

in association with a supraglacial pond, indicating that these processes may not result in complete 

decay or disintegration in all situations. Therefore, ice cliffs potentially undergo cycles of retreat 

and slope lowering until calving events are initiated often as a result of water-level undercutting, 

which reinstates the higher slope angles. Diolaiuti et al. (2006) suggested thermal undercut notches 
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at Lake Miage with growth rates of ~30 – 35 m a−1 were important for the initiation of such calving 

events and maintaining steep slope angles at the base of ice cliffs (Brun et al., 2016). Observed 

calving events at Lake Miage have previously been observed at the south-facing ice cliff, including 

a large event in 1996 in which the resultant displacement wave engulfed 11 tourists (Diolaiuti et al., 

2005, 2006). Diolaiuti et al. (2005) suggested differential ablation at the cliff face creates irregular 

geometry, forming distinctive calving zones as previously discussed. This is supported by differential 

ice cliff retreat rates shown in the M3C2 analysis across the southern facing cliff (Figure 6.5).  

Calving at Lake Miage is considered a primary control on ice cliff persistence. The increase in lake 

volume between 2017 and 2018 (Table 6.4) is attributed to rapid calving and waterline notching of 

the northern facing cliff at the eastern end of the lake resulting in the observed area increase and 

extension onto the glacier. In comparison, the south facing cliff saw less retreat attributed to 

subaerial melt (Table 6.6) and was observed during the survey period with relatively thick debris 

cover and lower slope values. It is considered that the southern-facing ice cliff at Lake Miage 

undergoes a cyclical regime of lowered slope angle, build-up of thicker debris in response to lower 

slope angles and therefore reduced ablation rates with predominance of subaqueous melt and 

thermal notch undercutting, which encourages calving to occur. This promotes increased slope 

angles where ice once again becomes exposed, increasing ablation. Once ice of the calving face is 

exposed it will undergo backwasting from long- and short-wave radiation (e.g. Steiner et al., 2015), 

gradually reducing slope angle. Kirkbride and Warren (1997) also observed cyclical calving stages 

over several weeks controlled by the rate of water line melting at the Maud Glacier, New Zealand. 

A longer-term cycle was identified where calving of the submerged ice foot occurred.  

Between 2017 and 2018, the ice cliffs surveyed at Miage Glacier accounted for 0.3 – 0.4% of the 

debris-covered area, although additional ice cliffs were present without associated ponds and likely 

account for additional ice loss but are considered to be more transient. Ice cliffs on Miage Glacier 

had a varied aspect with predominantly north-facing slopes, often observed to persist attributed to 

lower incoming solar radiation (Sakai et al., 2002; Kraaijenbrink et al., 2016a; Thompson et al., 2016; 

Watson et al., 2017a) and is likely responsible for the south-facing ice cliff surrounding Lake Miage 

having a lower mean slope in comparison to the north-facing slope (Table 6.5).  

 

6.4.5. Morphological relationships between ponds and adjacent ice cliffs 
Although the importance of supraglacial ponds and ice cliffs have previously been highlighted in 

terms of surface processes and contribution to glacier-scale ablation (e.g. Reid and Brock, 2014; 

Brun et al., 2016; Watson et al., 2017b, 2018b; Miles et al., 2018), the co-evolution of ponds and 

cliffs have seldom been assessed together despite important feedback processes, including the 

importance of calving and undercut notches for ice cliff persistence and calving (Watson et al., 
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2018b), having been identified. Analysis of supraglacial ponds and ice cliffs at Miage Glacier show 

they progressively grow together and often decay simultaneously. Although Lake Miage’s volume 

and cliff area increased simultaneously between 2017 and 2018, S1 and S2 experienced inverse 

relationships as pond volume of S1 increased, ice cliff area decreased and S2 pond volume 

decreased but saw an increase in ice cliff area. S3 and S4 saw a simultaneous decrease in both pond 

volume and ice cliff area consistent with drainage and ice cliff collapse over the annual study period 

(Table 6.4). By contrast, S1 has been observed over a number of years, and S2 appear to be more 

stable. One explanation for the inconsistent evolutionary patterns could be that pond volume and 

cliff area dynamics vary in response to cyclical processes and are able to regain a state of 

equilibrium unless either the pond or ice cliff exceeds the tipping point resulting in rapid drainage 

and collapse. Persistence is therefore considered to be dependent upon the balance between 

subaqueous melt, subaerial melt and calving events (Benn et al., 2001; Sakai et al., 2009).  

Morphological analysis aids understanding of pond expansion processes. Watson et al. (2018b) 

concluded that the bathymetry of ponds with ice cliffs can indicate whether pond expansion is likely 

based on pond deepening approaching the ice cliff. The deepest sections of S2, S4 and S5 ponds are 

located below the steepest sections of north-facing ice cliffs attributed to the thermodynamics of 

supraglacial ponds with ice cliffs despite pond reductions for S2 and S4. Warmer water is 

transferred to the bed close to the ice cliff encouraging subaqueous melt of the bed (Chikita et al., 

2001). Miles et al. (2016) identified water temperature and pond geometry to be important for 

transferring atmospheric energy to a glacier’s interior and promoting ablation. Watson et al. 

(2018b), Thompson et al. (2016), and Miles et al. (2016) also observed ponds with maximum depths 

adjacent to ice cliffs. It is therefore likely that signs of expansion processes including maximum 

depth close to ice cliffs are observed until englacial conduits are encountered initiating rapid 

drainage and decay. Once drainage has occurred, the buttressing effect provided by the water is 

removed, promoting collapse of the ice cliff. Conversely, with regard to S1, the deepest section was 

located away from the ice cliffs and surrounded by shallower water but underwent expansion 

during the survey period. The location of the deepest section in S1 is close to an inflow to the lake 

from a supraglacial stream indicating that pond inflow locations also influence the thermal regime 

and morphology of the bed despite expansion processes occurring.  

Expansion processes including calving, water-line notching and subaqueous melt are important for 

the co-existence and development of ponds and ice cliffs and will be discussed in turn. Although 

calving appears to be the main mechanism for growth of Lake Miage, the small supraglacial ponds 

appear to be dominantly melt-driven, forming small incised runnels on the cliff surface (Figure 6.5). 

Zhang et al. (2019) also found that ice melting and calving processes played dominant roles in 

driving lake enlargement in the central Himalaya. Larger ice cliffs are more likely to undergo calving 

due to a larger fetch, influencing pond circulation resulting in thermal notching and encouraging 
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melt at the bed approaching the cliff face (e.g. S4). However, this is limited with the smaller ponds 

and ice cliffs due to reduced fetch (e.g. S3). Mertes et al. (2017) attributed shallow pond depths 

near small ice cliffs to signify newly exposed ice or thick subaqueous debris restricting basal melt. 

The heavily debris-covered area of S3 in 2018 supports that the pond base was likely to have been 

heavily debris-covered during the 2017 survey. The disappearance of the ice cliffs or exposed ice at 

the site of S3 in 2018 supports the concept that the presence of ponds is important for the existence 

of ice cliffs (Watson et al., 2017b).  

Water line melting has been shown to be an important factor in supraglacial pond growth and for 

the onset of calving for cliffs >15 m in height (Benn et al., 2001). S1, S2 (in 2018), S4, S5 and the 

Lake Miage ice cliffs exceeded 15 m in height and evidence of water line notches were observed 

(Figure 6.4). No calving events were observed at any of the supraglacial ice cliffs during the survey 

period attributed to the ponds being smaller than the ~80 m fetch threshold for calving initiation 

(Sakai et al., 2009). Röhl (2008) also observed ice loss predominantly through subaerial melt in 

horizontal dimensions during early stages of development, while later stages were dominated by 

subaqueous calving. 

Lake floor deepening has been attributed to subaqueous calving or melt by heat conduction 

through sediments (Chikita et al., 1999). However, at Lake Miage it is highly likely that the presence 

of glacial debris on the bed and sloped sides (Masetti et al., 2010) (Figure 6.3) will reduce melt and 

hinder subaqueous calving (Benn et al., 2001) resulting in a central deep section away from the ice 

cliffs with reduced sediment, which underwent little change between the two surveys in 

comparison to the expansion in area. A bathymetric study of Lake Miage in 2003 by Diolaiuti et al. 

(2005), based on 556 points collected prior to the 2004 drainage event, showed a maximum depth 

of ~25 m. In this study, we have shown Lake Miage to reach a maximum depth of 37 m in 2017 

(Figure 6.2), indicating the lake has deepened substantially through subaqueous melt based on 

comparisons of surface lake levels resulting in increased water storage.  

 

6.5. Summary  
Analysis of pond-ice cliff interactions at Miage Glacier was assessed over the 2017 – 2018 survey 

period. The total volume of water storage at Miage Glacier increased by 46% from 174,047 m3 in 

2017 to 254,732 m3 in 2018; however, intermittent drainage events suggest this is highly variable 

over both seasonal and annual timescales. Although supraglacial ponds only equate to 8% of the 

water storage, they are important to consider as they are expected to increase in number over the 

coming decades with increasing debris cover and, along with ice cliffs, are important for 

understanding glacier scale ablation.  
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All ice cliffs underwent substantial vertical retreat ranging from −0.93 m a−1 to −8.15 m a−1 resulting 

in a loss of 39,569 m3 of ice. The highest retreat rates are attributed to an ice cliff in a state of decay. 

Ablation at the ice-marginal Lake Miage is primarily by calving, which exhibits a cyclical pattern of 

slope lowering by subaerial melt, burial by debris, thermal notch undercutting and subsequent 

increase via calving. In comparison, the smaller supraglacial ponds appear to be melt-driven, 

forming surface runnels in response to a smaller fetch. Supraglacial pond volume was driven by 

areal expansion with limited subaqueous basal melt or depth increase. Ice cliff and pond 

persistence are reliant upon a state of balance between subaqueous melt, subaerial melt and 

calving events.  

Supraglacial ponds and ice cliff co-existence are important in determining expansion processes 

through calving, water-line notching and subaqueous melt. As such, deep sections of supraglacial 

ponds are typically observed close to the associated ice cliff apart from where meltwater inflows 

interrupt the thermodynamics of the pond. European alpine ponds and ice cliffs have a substantial 

combined impact on glacier ablation rates and are therefore important to monitor to assess future 

glacier evolution and glacier scale ablation rates, which are expected to increase in response to 

warming temperatures. This study provides further understanding of simultaneous ice cliff and 

pond dynamics and contributes to the global dataset of small supraglacial pond bathymetric studies. 

Such data are required for future debris-covered glacier evolution assessments and refining pond-

cliff relationships to accurately model debris-covered glacier evolution. Expansion of the results will 

be examined in Chapter 8.  

  



Page | 114  
 

Chapter 7 : Debris-covered glacier dynamics in Manaslu, Nepal 1970 
– 2019 
7.1. Introduction  
Following the identification of an increase in supraglacial ponding and ice cliff development at 

Miage Glacier, which represented regions of enhanced ablation and contributed up to eight times 

the mean mass loss rates (Chapters 4 – 6), a comparison with heavily debris-covered Himalayan 

glaciers was undertaken. This enabled the assessment of environmental settings to further 

understand the evolution of debris-covered glaciers in Alpine and Himalayan environments.  

This chapter aims to assess debris-covered glacier dynamics in the Manaslu region focusing on 

Hinang Glacier and the neighbouring easterly flowing glaciers, specifically Punggen Glacier to the 

north and Himal Chuli Glacier to the south with similar environmental influences associated with 

the proximity of the glaciers to each other and their orientations (Figure 3.12, Table 7.1). Only 

limited research has been carried out in this region with the exception of studying the patterns of 

spatial variability of glacier change, and mapping of debris cover across the Manaslu region (Robson 

et al., 2015, 2018). Robson et al. (2018) observed reduced surface velocity across the debris-

covered tongues over time and variable, yet increasing, rates of mass loss over the 1970 to 2013 

period. Debris-free glaciers in the Manaslu region with lower elevations and bottom heavy 

hypsometries were observed to be losing the most mass. However, the evolution of surface 

features including supraglacial ponds and ice cliffs has not yet been explored. 

The objectives of this chapter are to (i) conduct high-resolution mapping of glacier surface features, 

(ii) assess the glacier dynamics of the easterly flowing Manaslu glaciers, and (iii) examine the impact 

of supraglacial ponds and ice cliffs on the evolution of Himalayan debris-covered glaciers. By 

comparing and contrasting the evolution of debris-covered glaciers in different regions a greater 

understanding of the climatic response of debris-covered glaciers and individual controls 

influencing glacier evolution can be appreciated. 

 

Table 7.1: Characteristics of the easterly flowing Manaslu glaciers. Data collated from GLIMs and 
Robson et al. (2018).  

 Punggen Glacier Hinang Glacier Himal Chuli Glacier 
Glacier number 
(GLIMs ID) 

G084584E28535N G084577E28496N 
G084689E285011N 

G084759E28427N 

Orientation (°) 67.5 67.5 67.5 
Minimum elevation 
(m) 

3843 3498 3268 

Maximum elevation 
(m) 

7606 7597 7165 

Hypsometric index 1.81 Not calculated 



Page | 115  
 

7.2. Methods 
A range of data sources were used in this study, including satellite imagery from 1970 to 2019. The 

1970 Corona satellite imagery was processed by Robson et al. (2018) to produce a DEM and 

orthophoto. The 2013 SETSM DEM was also previously downloaded by Robson et al. (2018) and is 

derived from WorldView satellite imagery. Although no longer available for download, it has since 

been replaced by the 8 m resolution High-Mountain Asia (HMA) DEM (available via NSIDC). 

However, the HMA was not used for this study as coverage in this region is limited with gaps across 

the study sites for specified years. Furthermore, the mosaic product is derived from imagery 

collected over 2002 to 2016 and does not represent the glacier surface during a specific time period. 

Additional DEMs were extracted from stereo SPOT imagery from 2016 and 2019 in PCI Geomatica 

following the methods previously detailed in Section 5.2. The derived orthophotos were then used 

to aid glacier mapping. Due to limited coverage and cloud free imagery covering these glaciers in 

the Manaslu region, the only suitable, available stereo satellite data between 2013 and 2019 were 

from March and April 2016, which include some snow cover. Thus, care must be taken when 

interpreting the results using the 2016 DEM. However, it represents the best available data and the 

lower debris-covered sections of the glaciers have little snow cover and were therefore included to 

provide additional details of glacier evolution.  

Landsat imagery was used to assess surface velocity change from 1991/1992, 2013/2014 and 

2018/2019 using a normalised cross-correlation of orientation images (NCC-O) method 

implemented through the CIAS software (Kääb and Vollmer, 2000; Heid and Kääb, 2012). Post-

processing methods are detailed in Section 5.2. All data used within this study are detailed in Table 

7.2 including the data sources and derived information used within this study.  
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Table 7.2: Data sets used within this study (SPOT and Pleiades data provided by ESA). Some snow 
cover exists in the 2016 data and must be interpreted with caution. All datasets used the 
panchromatic band for DEM extraction and SWIR for surface velocity analysis.  

Date of 
acquisition 
(dd/mm/yr) 

Sensor Image 
Resolution (m) 

Image Pairs Data extracted 

19/11/1970 Corona  1.8 Stereo DEM /Glacier mapping 
16/11/2013 
17/11/2013 
25/11/2013 
19/01/2014 

WorldView 1/2 
SETSM 

8.0 Stereo DEM 

16/11/2013 SPOT6 1.5  Glacier mapping 
25/04/2016 
23/03/2016 

SPOT6 1.5 Stereo DEM  

27/10/2019 SPOT7 1.5 Tri-stereo DEM/ Glacier mapping 
13/10/2019 Pleiades 1A 0.5 Tri-stereo DEM/ Glacier mapping 
26/09/1991 
14/10/1992 

Landsat5 TM 
Landsat5 TM 

30.00 
30.00 

 Surface velocity 

08/10/2013 
11/10/2014 

Landsat8 OLI  
Landsat8 OLI 

30.00 
30.00 

 Surface velocity 

22/10/2018 
25/10/2019 

Landsat8 OLI 
Landsat8 OLI 

30.00 
30.00 

 Surface velocity 

2019 May to 
November 

Planetscope  3.0 Individual 
scenes 

NDWI 
Pond mapping 

 

 

7.2.1. Glacier mapping  
Glacier surfaces were mapped from orthophotos derived from the 1970 Corona imagery, 2013 

SPOT orthophoto and 2019 SPOT/Pleiades orthophotos and glacier change assessed. Methods were 

used as detailed in Sections 4.2. and 5.2. including mapping of the glacier extent, debris cover, 

crevassing, ogive bands, and surface features (including supraglacial ponds and ice cliffs). 

Uncertainty and accuracy estimates were calculated as previously documented via repeat mapping 

and are presented in Table 7.3 and with the results. Supraglacial ponds were mapped with a 

maximum percentage variation of 8% and standard deviations ranging from 21 to 450 m2. Repeat 

mapping of ice cliff standard deviations ranged from 20 to 337 m2 with maximum percentage 

variations of 6%. 
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Table 7.3: Accuracy and uncertainty estimates associated with the mapped components. Ranges 
show the maximum and minimum values for Punggen Glacier, Hinang Glacier and Himal Chuli 
Glacier. 

Date Glacier extent/ 

termini position 

(km2/m) 

Debris cover at 

±5% (km2) 

Supraglacial 

ponds at ±10% 

(m2) 

Ice cliffs at ±8% 

(m2) 

1970 ±0.26 / 9.09 0.14 – 0.63 1204 960 – 5040 

2013 ±0.25 / 7.5 0.19 – 0.44 305 – 1140 180 – 2700 

2019 ±0.13 / 7.5 0.20 – 0.57 326 – 3459 240 – 1500 

 

7.2.2. Digital Elevation Model (DEM) analysis 
Details for DEM extraction, analysis and uncertainty assessment are the same as used for Miage 

Glacier in Section 5.2.1. Digital Elevation Models (DEM) extraction. Table 7.4 details the GCPs and 

tie-points used in the DEM extraction within PCI Geomatica.  

Table 7.4: Summary of the GCPs and tie-points used to enhance the alignment of the imagery prior 
to DEM extraction.  

DEM Number of GCPs Residuals 
X, Y (Pixels) 

Number of tie-
points 

Residuals 
X, Y (Pixels) 

2016 16 1.12, 2.74 256 0.90, 0.60 
2019 97 0.87, 2.23 32 0.16, 0.19 

 

DEM co-registration was carried out as previously detailed in Section 5.2.1. following the methods 

by Nuth and Kääb (2011); however, once the co-registered surface elevation had been filtered to 

remove errors, which exceeded three times the standard deviation of stable terrain (Gardelle et al., 

2013), gaps were then filled with a trend interpolation as recommended by McNabb et al. (2019).  

Glacier hypsometry was calculated based on the glacier extents and the extracted 2019 DEM based 

on the methods by Robson et al. (2018) and King et al. (2017) using Equation 7.1. 

𝑯𝑯𝑯𝑯 = 𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯−𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯
𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯−𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 

  if 0 < HI < 1 then 𝑯𝑯𝑯𝑯 =  −𝟏𝟏
𝑯𝑯𝑯𝑯

     Equation 7.1 

 

7.2.3. Surface velocity 
Analysis was carried out using the CIAS software and processing steps were followed as detailed in 

Section 5.2.2., including a comprehensive assessment of the uncertainties related to the surface 

velocity calculation. Table 7.5 presents the accuracy assessment for the derived surface velocity 

datasets.  
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Table 7.5: Accuracy assessment of the surface velocity feature tracking calculated for each glacier 
based on stable ground.  

 Punggen Glacier Hinang Glacier Himal Chuli Glacier 
Velocity 
data set 

Standard 
Deviation 

(m a−1) 

Mean error 
(m a−1) 

Standard 
Deviation 

(m a−1) 

Mean 
error (m 

a−1) 

Standard 
Deviation 

(m a−1) 

Mean 
error (m 

a−1) 
1991 / 
1992 45.03 31.98 53.53 38.80 43.23 27.70 
2013 / 
2014 33.33 15.57 32.36 16.64 21.85 6.73 
2018 / 
2019 38.24 20.96 30.69 11.13 25.31 7.88 

 

 

7.2.4. Bathymetric surveys 
A field visit to Hinang Glacier was undertaken in September 2019, and four accessible supraglacial 

ponds were surveyed with the Seafloor Systems Hydrone remote control bathymetric survey as 

detailed in Section 6.2.1. For each of the four ponds surveyed, a photogrammetry survey was also 

carried out and a SfM derived model created to assess ice cliff – pond relationships. Due to time 

and equipment limitations in addition to difficulty accessing the highly undulating glacier and 

supraglacial ponds, only four ponds and associated ice cliffs were surveyed. Additional supraglacial 

ponds were observed both from the higher lateral moraines and satellite imagery but were deemed 

either unsafe or not accessible to cross the glacier due to the terrain and ability to transfer the 

equipment to the locations of the ponds. Details of the four bathymetric surveys completed in 

September 2019 including the number of depth measurements, GNSS accuracy of the depth points, 

and the mean interpolation error (RMSE) are detailed in Table 7.6. Locations of the surveyed 

supraglacial ponds on Hinang Glacier are shown in Figure 7.1.  

 

Table 7.6: Number of depth measurements, mean XY GPS accuracy and RMSE for the IDW 
interpolations for the bathymetric maps.  

Pond Number of depth 
measurements 

Mean XY GPS 
accuracy (m) 

Mean interpolation 
standard error (RMSE) 

Supraglacial pond 1 – H1 
Supraglacial pond 2 – H2 
Supraglacial pond 3 – H3 
Supraglacial pond 4 – H4 

1713 0.08 0.168 
5846 0.47 0.476 
2577 0.11 0.600 
2416 0.07 0.297 
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Figure 7.1: Locations of the ponds that were surveyed on Hinang Glacier in September 2019 and 
additional ponds that were identified using Planet satellite imagery. Purple dot indicates the 
location where the time-lapse camera was installed in 2019.  

7.2.5. Photogrammetry surveys 
All photogrammetric surveys were undertaken in September 2019 in clear weather conditions. 

Surveys were generally carried out in the mornings when the weather was clearer and drier as 

afternoon monsoon rain and cloud often came up the valley obscuring views. The photogrammetry 

surveys were limited to the adjacent ice cliffs that surrounded the bathymetrically surveyed 

supraglacial ponds. Large ice cliffs were observed across the glacier due to the undulating surface 

topography. Each ice cliff survey typically took <2 hours, with between 126 to 415 images 

dependant on cliff size and extent of undulating topography. The spread of GCPs was limited to 

more stable areas, which were accessible as the large cliff faces and unstable debris was difficult to 

manoeuvre upon. Therefore, the GCPs were not always ideally spatially placed around the ice cliff 

but were located to get the best spatial coverage possible (Table 7.7). 

Table 7.7: Errors of the photogrammetry SfM ice cliff models during processing and summary of 
GCPs, check points and accuracy.  

Pond Resolution 
mm/pix 

Georeferencing 
XYZ 
uncertainty 
(m) 

Mean 
point 
density 
(per m2) 

No. 
control 
GCPs 

RMSE -
control 
(m) 

No. 
check 
points 

Accuracy 
– check 
(cm) 

H1 
H2 
H3 
H4 

2.22  
137  
2.40  

0.08 
0.40 
0.11 

5.6 x 104 

1.3 x 103 

4.1 x 104 

4 
5 
5 

0.02 
0.25 
0.10 

4 
5 
4 

0.06 
0.41 
0.16 

6.41  0.07 6.8 x 103 4 0.03 3 0.12 
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Quantification of change or ice loss associated with the supraglacial ponds or ice cliffs was not 

possible due to only having surveyed them during one field season. During the fieldwork, an enlaps 

Tikee time-lapse camera was placed high up on the northern lateral moraine (Figure 7.1) to capture 

glacier change including those of the largest pond surveyed (H2). It is hoped that future work will 

enable more detailed analysis of glacier and pond/cliff evolution at this location.  

 

7.3. Results 
7.3.1. Surface mapping 
Glacier surface change was mapped from orthophotos derived from the imagery obtained in 1970, 

2013 and 2019 (Figure 7.2 to Figure 7.4). Glacier extent reduced for all three easterly flowing 

glaciers in the Manaslu region, with a maximum reduction of 16% for Punggen Glacier, and a 

minimum of 4.5% for Hinang Glacier between 1970 and 2019 (Table 7.8). During this period, debris-

cover expanded upglacier by between 2 – 9% of the glacier area with the largest increase observed 

on Punggen Glacier having expanded upglacier by ~1.5 km. The presence of supraglacial ponds 

increased on all three glaciers over the 1970 to 2019 period with the largest ponded area increase 

observed on Hinang Glacier from 0 to 43,235 km2. Conversely, despite the increase in supraglacial 

ponds, ice cliffs have existed across the glacier surfaces of all three glaciers since the start of the 

study period in 1970 and maintained a relatively stable extent throughout the observation period 

(Table 7.8).  

Icefalls are present on all three glaciers and transfer ice mass between the higher accumulation 

zones to the lower debris-covered regions confined within the valleys. Ogives are visible on all three 

glaciers at the base of the icefalls associated with ice flux across the steep topography from the 

higher accumulation zones. Crevasses were limited to the upper and lateral regions and decreased 

over the observation period, in part due to the increase in debris cover limiting their visibility in the 

imagery.  
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Figure 7.2: Surface mapping in 1970 of A: Punggen Glacier, B: Hinang Glacier and C: Himal Chuli 
Glacier. Background images show Landsat imagery.  
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Figure 7.3: Surface mapping in 2013 of A: Punggen Glacier, B: Hinang Glacier and C: Himal Chuli 
Glacier. Background images show Landsat imagery from the corresponding year.  
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Figure 7.4: Surface mapping in 2019 of A: Punggen Glacier, B: Hinang Glacier and C: Himal Chuli 
Glacier Background images show Landsat imagery from the corresponding year.  
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Table 7.8: Glacier surface change derived from mapping of the orthophotos in 1970, 2013 and 2019 as shown in Figure 7.2 to Figure 7.4.  

 1970 2013 2019 
Surface feature Punggen Hinang Himal Chuli Punggen Hinang Himal 

Chuli 
Punggen Hinang Himal Chuli 

Glacier extent (km2) 22.1 19.9 39.7 18.7 19.0 37.9 18.6 18.6 36.9 
Debris extent (km2) 2.7 10.4 5.3 3.9 11.8 5.8 3.9 11.3 5.5 
Debris extent as % of 
total glacier area 

12 52 13 21 62 15 21 61 15 

Supraglacial ponds 
(m2) 

0 0 
15047 

 
14252 

 
9738 

 
3807 

 
4076 

 
43235 

 
28456 

 
Percentage cover of 
supraglacial ponds of 
the total glacier area 

0 0 0.04 0.08 0.05 0.01 0.02 0.23 0.08 

Ice cliffs (km2) 0.19 
 

0.84 
 

0.16 
 

0.14 
 

0.45 
 

0.03 
 

0.05 
 

0.25 
 

0.04 
 

Percentage cover of 
ice cliffs of total 
glacier area 

0.86 4.22 0.40 0.75 2.37 0.08 0.27 1.34 0.11 

Ogives (km) - 11.30 4.82 3.92 9.20 4.76 2.34 12.20 2.56 
Crevasses (km) 17.30 5.30 30.40 13.27 4.90 22.84 23.70 13.06 22.50 
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7.3.2. Surface elevation change 1970 – 2019 
The overall trend in surface elevation change over the 1970 to 2019 study period is of sustained 

surface lowering for all three of the easterly flowing Manaslu glaciers (Figure 7.5). Hinang Glacier 

experienced the highest rates of surface lowering (−0.47 ± 0.05 m a−1), while Punggen Glacier 

underwent the least surface lowering (−0.27 ± 0.03 m a−1). Himal Chuli Glacier experienced 

−0.33 ± 0.03 m a−1 surface lowering over the full study period from 1970 to 2019 (Table 7.9).  

 

 

Figure 7.5: Surface elevation change in 1970 – 2019 covering Punggen Glacier, Hinang Glacier and 
Himal Chuli Glacier.  
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Figure 7.6: Surface elevation change in 2013 – 2019 covering Punggen Glacier, Hinang Glacier and 
Himal Chuli Glacier.  
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Figure 7.7: Surface elevation change in 2013 – 2016 covering Punggen Glacier, Hinang Glacier and 
Himal Chuli Glacier.  
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Figure 7.8: Surface elevation change in 2016 – 2019 covering Punggen Glacier, Hinang Glacier and 
Himal Chuli Glacier.  
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Table 7.9: Glacier surface elevation change per year and calculated geodetic mass balance of Punggen Glacier, Hinang Glacier and Himal Chuli Glacier from 1970 to 2019. 
*Care should be taken when interpreting the results associated with the 2016 DEM data as snow cover in the upper reaches incorporates mass loss from seasonal snow 
cover.  

 Surface elevation change (m a−1) Geodetic mass balance (m w.e.a−1) 
 Punggen Hinang Himal Chuli Punggen Hinang Himal Chuli 
1970 – 2019 −0.27 ± 0.03 −0.47 ± 0.05 −0.33 ± 0.03 −0.23 ± 0.04 −0.40 ± 0.07 −0.24 ± 0.04 
1970 – 2013 −0.38 ± 0.04 −0.40 ± 0.04 −0.67 ± 0.06 −0.32 ± 0.06 −0.34 ± 0.06 −0.49 ± 0.09 
2013 – 2019 −0.93 ± 0.11 −1.23 ± 0.14 +0.58 ± 0.07 −0.79 ± 0.15 −1.05 ± 0.19 +0.49 ± 0.10 
2013 – 2016 +0.82 ± 0.10 −0.49 ± 0.09 −0.42 ± 0.11 +0.70 ± 0.13 −0.41 ± 0.10 −0.55 ± 0.11 
2016 – 2019 −3.81 ± 0.34 −2.13 ± 0.20 +0.53 ± 0.06 −3.24 ± 0.56 −1.81 ± 0.32 +0.45 ± 0.08 
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Over the 1970 – 2019 study period, high thinning rates were generally observed on the lower 

debris-covered valley sections of the glaciers, with limited surface lowering in the higher 

accumulation zones (Figure 7.5). These areas in the upper reaches also exhibit regions of positive 

surface elevation change associated with snow accumulation, including along ridges, and ice 

dynamics at higher elevations.  

Variable surface lowering rates were observed on all three glaciers from 1970 – 2019, but indicate 

substantially increased rates of surface lowering between 2013 and 2019 on Punggen Glacier and 

Hinang Glacier with up to −1.23 ± 0.16 m a−1 surface lowering on Hinang Glacier (Table 7.9, Figure 7.6). 

In contrast, during this period Himal Chuli Glacier experienced an overall positive mass balance of 

+0.58 ± 0.07 m a−1 indicating strong individual glacier variability.  

Heterogenous elevation change is evident across the glacier surfaces and between the three 

glaciers. Punggen Glacier shows a region of high thinning rates on the southern side at the base of 

steep section as ice flows into the valley section where debris cover has increased (Figure 7.2, Figure 

7.5 to Figure 7.8). Hinang Glacier shows fairly homogenous surface lowering across the glacier 

surface over the full study period, with a zone of positive surface elevation change at the glacier 

terminus suspected to result from debris accumulation. Himal Chuli Glacier shows high rates of 

surface lowering on the narrow icefall, which transfers ice from the accumulation zone to the main 

trunk, yet highly variable surface elevation change on the trunk glacier. Overall, the trunk section 

was dominated by slightly positive surface elevation change over the full observation period from 

1970 to 2019 (Figure 7.5). Despite overall long-term surface lowering, regions on the valley glacier 

including a rockfall deposit as identified by Robson et al. (2018)and presence of a large supraglacial 

pond are evident with surface lowering between 2013 and 2016 (Figure 7.7) and surface increase 

between 2016 – 2019 (Figure 7.8) showing high levels of variability and heterogenous change. 

Variability in elevation change can be observed on all three glaciers with high levels of heterogenous 

surface lowering associated with the debris-covered regions, supraglacial ponds and ice cliffs 

(Figure 7.9, Table 7.10). Punggen Glacier and Hinang Glacier show high rates of surface lowering 

under the mapped debris-covered regions between 2013 to 2019 compared to Himal Chuli Glacier, 

which shows positive surface elevation change, yet regions of ice cliffs are strongly associated with 

ice loss (Table 7.10).  
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Table 7.10: Summary of surface elevation change on regions associated with debris cover, 
supraglacial ponds and ice cliffs. Uncertainty of supraglacial ponds and ice cliffs was estimated <8%. 

  Surface elevation change (m a−1) 
  Debris cover Supraglacial ponds Ice cliffs 

Punggen Glacier 

1970 – 2013  −0.42 ± 0.03   
2013 – 2019  −2.29 ± 0.12   
2013 – 2016  −1.02 ± 0.10 −2.47 −4.57 
2016 – 2019  −4.21 ± 0.34 −4.46 −4.35 

Hinang Glacier 

1970 – 2013  −0.46 ± 0.05   
2013 – 2019  −1.62 ± 0.15   
2013 – 2016  −0.92 ± 0.09 −1.30 −1.19 
2016 – 2019  −2.33 ± 0.20 −2.42 −2.30 

Himal Chuli 
Glacier 

1970 – 2013  +0.09 ± 0.05   
2013 – 2019  +0.39 ± 0.08   
2013 – 2016  −0.16 ± 0.11 −2.16 −0.65 
2016 – 2019  +0.06 ± 0.06 +0.68 −0.35 
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Figure 7.9: Surface elevation change m a−1 and supraglacial pond locations 2013 – 2016 for Punggen Glacier (A1), Hinang Glacier (B1) and Himal Chuli Glacier 
(C1). Elevation change and pond locations between 2016 – 2019 for Punggen Glacier (A2), Hinang Glacier (B2) and Himal Chuli Glacier (C2). Supraglacial 
pond distribution between 2013 and 2019 for Punggen Glacier (A3), Hinang Glacier (B3) and Himal Chuli Glacier (C3).  
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Longitudinal profiles show a highly undulating glacier surface on Punggen Glacier, which has 

increased in the lower section and lowered in the upper region associated with the steeper 

topography (Figure 7.10). Hinang Glacier shows very little change and a comparatively smooth 

surface topography with a low overall surface gradient <5°, and Himal Chuli Glacier shows a similar 

profile inversion to that of Punggen Glacier and highest surface gradient of the three glaciers (>5°). 

Furthermore, all three glaciers indicate very little change in surface gradient from 1970 to 2019 

with the highest change detected on regions where supraglacial ponding was observed on Punggen 

Glacier (reduction of 0.73°).  

 

Figure 7.10: Longitudinal profiles of Punggen Glacier, Hinang Glacier and Himal Chuli Glacier with 
the overall change in surface gradient and change over the regions associated with supraglacial 
ponding. Greyed out section indicates the regions where supraglacial ponding was observed.  

 

Hypsometric indexes were calculated for the three glaciers based on the 2019 DEM and showed 

that Punngen Glacier and Hinang Glacier exhibited equidimensional hypsometries with values of 

−0.46 and −0.54 respectively. In comparison, Himal Chuli Glacier exhibited a very top heavy 

hypsometry with an index of −1.67, relating to the large accumulation zones in comparison to the 

debris-covered ablation zone.  

 

 



Page | 134  
 

7.3.3. Surface velocity change 1991 – 2019  
The surface velocity of Punggen Glacier and Hinang Glacier reduced over the 1991 to 2019 period 

with an overall reduction of 36 and 19% respectively (Figure 7.11, Table 7.11). Yet, Himal Chuli 

Glacier underwent a reduction between 1991/1992 and 2013/2014 followed by an increase in 

mean surface velocity and exhibited the largest overall reduction between 1991 to 2019 of 45%. 

The most prominent reduction in surface velocity was observed in the lower 500 m terminus region 

of all three glaciers where rates <5 m a-1 indicate stagnation. The stagnating zone is also 

progressively migrating upglacier from the terminus.  

 

Figure 7.11: Surface velocity in A: 1991/1992, B: 2013/2014, and C: 2018/2019.  

 



Page | 135  
 

Table 7.11: Mean surface velocity change from 1991 to 2019 for Punggen Glacier, Hinang Glacier 
and Himal Chuli Glacier calculated from regions shown in Figure 7.11. 

Time period Punggen Glacier 
surface velocity (m a−1) 

Hinang Glacier surface 
velocity (m a−1) 

Himal Chuli Glacier 
surface velocity (m a−1) 

1991 / 1992 27.86 46.61 78.55 
2013 / 2014 25.88 40.24 35.18 
2018 / 2019 17.91 37.77 43.55 

 

Punggen Glacier exhibited an increase in surface velocity in the upper reaches in 2013/2014 where 

steeper topography transfers ice via the icefall, but by 2018/2019 this was limited to the tributary 

glacier around a nunatak (Figure 7.11c, Figure 7.2). By 2018/2019 the most active ice flow was 

restricted to the higher elevations, tributary glaciers and narrow icefalls, which confine the transfer 

of ice from the accumulation zones.  

 

7.3.4. Photogrammetry and bathymetry analysis 
The four surveyed supraglacial ponds and ice cliffs surveyed on Hinang Glacier in September 2019 

are shown in Figure 7.12. Pond depths varied from 5.42 m to 25.7 m (Table 7.12). The largest of the 

ponds surveyed was also the largest pond present on the glacier during the survey period and held 

a volume of 107,246 m3, whilst the smallest pond only held 280 m3. The four supraglacial ponds 

combined held a volume of 142,958 m3. The four surveyed ponds are representative of 53% of the 

total ponded area and H2 represents 39% of the total ponded area alone. 
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Figure 7.12: Bathymetric surveys of the supraglacial ponds and SfM photogrammetry models of the 
adjacent ice cliffs.  

Table 7.12: Area, depth, lake levels and volume of supraglacial ponds surveyed in September 2019. 
Uncertainties were calculated from RMSE.  

 Area (m2) Max. depth (m) Lake level (m) Volume (m3) 
Supraglacial pond 1 (H1)  329 5.42 ± 0.01 3948.08 280 ± 0.17 
Supraglacial pond 2 (H2) 16791 25.7 ± 0.06 3962.19 107246 ± 0.48 
Supraglacial pond 3 (H3) 714 14.12 ± 0.04 3966.40 3198 ± 0.60  
Supraglacial pond 4 (H4) 5290 14.43 ± 0.04 3616.10 32234 ± 0.30 

 

The maximum height of the ice cliffs varied from 8.69 m to 31.64 m and the surface area ranges 

from 425 to 18,199 m2. The ice cliffs were predominantly north facing with mean slopes ranging 

from 5 to 24° (Table 7.13). The ice cliff with the highest surface area and maximum height, was 

adjacent to the largest supraglacial pond surveyed (H2).  

Table 7.13: Summary of 2019 ice cliff geometry results.  

Model Max. height of ice 
cliff (m)  

Surface Area 
(m2) 

Aspect 
(°) 

Mean slope 
(°)  

H1 
H2 
H3 
H4 

8.69 425 083 24 
29.23 18199 013 10 
15.25 784 256 6 
31.64 3439 313 5 
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7.3.5. Monsoon season pond variability 
To further explore the seasonal variability of supraglacial ponds throughout the 2019 monsoon 

season, ponds were mapped from PlanetScope 3 m resolution optical satellite imagery once per 

month from May to November (Figure 7.13). Furthermore, the four supraglacial ponds surveyed on 

Hinang Glacier in September were identified individually to determine whether they were transient 

or more persistent features. H1, the smallest of the surveyed ponds, appeared to be a highly 

transient and short-lived feature, while H2 and H3 persisted throughout the monsoon season. H4 

formed in July and persisted throughout the rest of the monsoon season (Table 7.14). 

Seasonal variability at Hinang Glacier was observed with the highest number of ponds present at 

the beginning of the monsoon season in May to June after which the number declined towards 

winter. Despite a reduction in the number of ponds from May to August, the total ponded area 

varied and declined after August towards the winter season with a lowest ponded area and pond 

number in November indicating a number of drainage events.  
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Figure 7.13: Seasonal variability of supraglacial ponds over Punggen Glacier, Hinang Glacier and Himal Chuli Glacier.  



 
 

Estimated pond volumes were calculated based on the updated power law relationship defined by 

Watson et al. (2018b) and Cook and Quincey (2015) (Equation 6.2).  

Table 7.14: Changes in supraglacial pond number, area and volumes over the monsoon season from 
May to November 2019 at Hinang Glacier. 

 Number 
of 
ponds 

Area 
(m2) 

Estimated 
Volume 
(m3) 

H1 area 
(m2) 

H2 area 
(m2) 

H3 area 
(m2) 

H4 area 
(m2) 

29 May 2019 37 54436 587476 0 6326 503 0 
10 June 2019 43 58890 655339 0 7275 509 0 
18 July 2019 25 47026 479356 0 15560 518 2061 
28 August 2019 19 55906 609643 0 18685 674 4405 
20 September 2019 19 45450 457173 343 18199 690 4066 
27 October 2019 18 53872 579033 0 19249 573 3930 
21 November 2019 17 39445 375437 0 13816 701 3933 

 

Comparatively, the ponds on Punggen Glacier (Table 7.15) show a similar seasonal trend to that of 

Hinang Glacier (Table 7.14) with an overall reduction in ponded area over the monsoon season, yet 

Himal Chuli Glacier underwent substantially higher variability with a decrease in ponded area until 

August followed by a slight increase with an overall reduction in pond area and volume by 

November (Table 7.15). The variability in pond area and volume at Himal Chuli Glacier is largely 

dominated by a large pond located on the rockfall deposit.  

 

Table 7.15: Changes in supraglacial pond properties over the monsoon season from May 2019 to 
November 2019 for Punggen Glacier and Himal Chuli Glacier. Imagery was not available covering 
Himal Chuli Glacier in September 2019.  

 Punggen Glacier Himal Chuli Glacier 
 Number 

of ponds 
Area 
(m2) 

Estimated 
volume 
(m3) 

Number 
of ponds 

Area (m2) Estimated 
volume 
(m3) 

29 May 2019 7 7250 35643 13 72399 873246 
10 June 2019 8 9279 50227 9 75258 921545 
18 July 2019 8 7557 37758 6 33585 300227 
28 August 2019 3 4619 19047 11 45033 451353 
20 September 2019 4 4607 18978 - - - 
27 October 2019 2 4696 19490 7 27583 228349 
21 November 2019 2 5679 25383 12 26960 221212 
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7.4. Discussion 
7.4.1. Glacier evolution and variability of the eastern Manaslu glaciers 
The easterly flowing glaciers of the Manaslu conservation area present spatial and temporal 

variability over the study period from 1970 to 2019. Despite the similarities of location, flow 

direction, relative altitude (~3050 – 6800 m asl), and assumed monsoonal weather patterns, these 

three glaciers show substantial inter glacier variation. Some of these variations are considered to 

be influenced by dynamic flow behaviour relating to glacier hypsometry in addition to individual 

glacier dependent debris-covered glacier dynamics.  

Over the study period, between 1970 and 2019, all three glaciers exhibited overall negative mass 

balances consistent with rates of mass loss elsewhere across the Himalaya, which have persisted 

for several decades (Azam et al., 2018; Bolch et al., 2019; King et al., 2019; Shean et al., 2020). 

Furthermore, accelerating rates of mass loss were observed on Punngen Glacier and Hinang Glacier 

with geodetic mass loss rates having increased fourfold (Table 7.9). This trend of accelerating rates 

of mass loss has been observed across the Himalaya (e.g. Kääb et al., 2012; Gardelle et al., 2013; 

Brun et al., 2017; King et al., 2020a) including in the Everest region (King et al., 2020a), yet the rates 

observed here are higher than those previously observed. Rates between 2009 and 2018 in the 

Everest region equated to −0.38 ± 0.11 m w.e. a−1, and are similar to the global mean rate of glacier 

mass loss of −0.47 m w.e. a−1 (Zemp et al., 2019). However, between 2013 and 2019 rates of in 

excess of −0.93 m w.e. a−1 were observed on Punggen Glacier and Hinang Glacier and suggest much 

higher rates of mass loss in the Manaslu region in comparison to the Everest region during the past 

decade. Previous mass loss rates in Manaslu of −0.21 to −0.16 m w.e. a−1 between 2000 and 2013  

(Robson et al., 2018) were broadly consistent with the regional east (−0.22 to −0.33 m w.e. a−1) to 

west (−0.45 to −0.55 m w.e a−1) gradient of mass loss across the Himalaya (Kääb et al., 2012; 

Gardelle et al., 2013; Brun et al., 2017; Lovell et al., 2019). However, many of these studies have 

not investigated more recent trends beyond the mid-2010s, which have indicated higher rates of 

mass loss in the past few years (Bolch et al., 2011; King et al., 2017, 2020a). Rates in excess of those 

observed here have been observed on the Panchi Nala Glacier in the Himal Pradesh region of 

western Himalaya, which underwent extensive lowering of −1.62 m between 2000 and 2013 

(Shukla and Garg, 2019). They surmised that increases in the mean winter minimum temperature 

and decreases in winter snowfall are likely to be the main drivers of such high rates of depletion 

consistent with increasing temperatures and reduced precipitation identified in Manaslu as in 

Figure 3.11 (Kattel and Yao, 2013; Panthi et al., 2015). Thus, there are high levels of variability within 

the broad east to west gradient attributed to the strong influence of the Indian and East Asian 

monsoon (Yao et al., 2012b; Lovell et al., 2018). Although this trend appears to be variable, these 

data support previous studies, which also observed increasing mass loss trends on the Manaslu 

glaciers in recent periods (Robson et al., 2018), with the exception of Himal Chuli Glacier.  
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In comparison to Punggen Glacier and Hinang Glacier, Himal Chuli Glacier shows far more complex 

dynamics and variability over the study period. The overall mass balance was similar to the 

neighbouring glaciers showing a negative mass balance, yet further analysis showed a higher rate 

of mass loss between 1970 to 2013 and a positive mass balance of +0.58 ± 0.07 m a−1 between 2013 

and 2019 despite the neighbouring glaciers continuing to exhibit enhanced negative mass loss 

during this period (Table 7.9 and Figure 7.5 to Figure 7.8). During this period of mass gain (2013 – 

2019), Himal Chuli Glacier also exhibited surface velocity variability and shows a decrease in surface 

velocity between 1991 – 1992 and 2013 – 2014 followed by an increase in surface velocity in 2018 

– 2019 with a noticeable increase below the icefall (Figure 7.11). Despite this slight increase in 

surface velocity in 2013 – 2014, the glacier slowed overall by 45%. Comparatively, Punggen Glacier 

slowed by 35% and Hinang Glacier by 21% in response to sustained mass loss and reduced transfer 

of ice from the higher accumulation zones over the survey period resulting in reduced driving stress 

(Quincey et al., 2009; Dehecq et al., 2019). All three glaciers were observed with near stagnant 

surface velocities in the lower glacier termini.  

Although the 2016 SPOT imagery included snow cover in the higher accumulation areas, the lower 

debris-covered regions were relatively clear of snow. Therefore, care must be taken when 

interpreting the 2016 extracted DEMs and derived rates of change due to the snow artificially 

amplifying the rates of mass loss and mass gain as presented in Table 7.9. However, these data 

present the only available imagery or elevation data in this region during this time period. 

Regardless of this artificial enhancement, DEM differencing analysis indicates a substantial increase 

in mass loss from 2016 – 2019 on the lower, snow-free sections compared to the previous time 

periods.  

During the study period (1970 – 2019), glacier extent only reduced slightly with a maximum of 16% 

for Punggen Glacier despite being at the highest elevation of the three study glaciers. Concurrently, 

the three glaciers underwent increased debris-cover extent that expanded up to the icefalls on each 

glacier. Furthermore, the icefalls appeared to be darkening over the survey period associated with 

the incorporation of finer wind-blown surface debris trapped within faulted ice (e.g. Goodsell et al., 

2002). The presence of the icefall, indicative of steeper topography, is considered to act as a 

topographic barrier to continued debris expansion due to the steepness and inability of debris to 

withstand angles in excess of 28 – 40° (Röhl, 2008; Reid and Brock, 2014). Thus, only the finer 

surface debris and possible uplifted basal debris (Goodsell et al., 2002) are likely to be responsible 

for this darkening trend and larger debris particles from rock falls and melt-out will accumulate at 

the base of the icefalls and increase debris thickness before being redistributed (Gibson et al., 

2017a).  
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These evolutionary traits are broadly consistent with debris-covered glaciers elsewhere in the 

Himalaya and worldwide including those previously observed at Miage Glacier (Chapters 4 – 6), 

which also exhibit sustained negative mass balance, reduced flow rates and stagnation, low surface 

gradient and increasing surface debris cover and development of surface features with an 

increasingly undulating surface topography (Quincey et al., 2009; Benn et al., 2012; Bolch et al., 

2012; Rowan et al., 2015; Anderson and Anderson, 2018; Dehecq et al., 2019). However, additional 

complexities observed at Himal Chuli Glacier and contributions of surface features in terms of 

glacier evolution require further consideration.  

 

7.4.2. Himal Chuli Glacier flow behaviour 
Himal Chuli Glacier has exhibited variability in surface velocity and periods of both positive and 

negative mass balance over the full observation period from 1970 to 2019 compared to Punggen 

Glacier and Hinang Glacier. Despite the three glaciers being in the same region with the same broad 

climate conditions (Table 7.1), site specific factors must explain differences in glacier behaviour.  

The hypsometric index for Himal Chuli Glacier support a very top heavy glacier, with large 

accumulation zones capable of capturing extensive winter accumulation. In comparison, Punggen 

Glacier and Hinang Glacier have small accumulation zones and are indicative of equidimensional 

hypsometries. Robson et al. (2018) previously calculated a hypsometric index of 1.81 indicating a 

very bottom heavy hypsometry; however, the reduction in glacier extent by 2019 is considered to 

have resulted in a substantial change in glacier hypsometry and is consistent with previous studies, 

which identified bottom heavy glaciers are losing the most mass (King et al., 2017; Lovell et al., 

2019). Furthermore, ERA5 climate data provided by MeteoBlue (Figure 3.11), at Hinang Glacier 

show high levels of snowfall in excess of 73 cm in October 2014, yet this snowfall was not measured 

at Himal Chuli Glacier and appears to be limited to the higher elevations (Appendix 1). It is 

considered that the large accumulation zone of Himal Chuli Glacier is able to transfer ice via the 

central tributary pumping ice into the icefall promoting unstable flow to the lower ablation zones. 

Thus, accounting for the variability of surface elevation trends and representing a redistribution of 

ice mass downglacier in response to precipitation at higher elevations and glacier hypsometry 

controlled by the icefall through the narrow valley. 

Robson et al. (2018) observed increased velocities on Himal Chuli Glacier in the same region where 

surface elevation gain was observed in Figure 7.9,C2. Previous reports of increased surface 

velocities in regions of surface elevation gain with surface lowering upglacier have been associated 

with surge-type behaviour observed in the Everest and Annapurna regions (Lovell et al., 2018; King 

et al., 2020a). The Sabche Glacier on the southwest flank of nearby Annapurna, has surged at least 

four times over the last 50 years and it was assumed to be partially controlled by the subglacial 
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topography associated with an overdeepening, and a topographical constriction upglacier acting to 

moderate the timing and duration of the surges (Lovell et al., 2018). It is therefore possible that the 

same mechanisms could be true of Himal Chuli Glacier, with a topographical constriction presented 

by the flow around a bend above the icefall moderating the downglacier ice flux from the large 

accumulation zone. It is considered that the region of elevation gain identified in Figure 7.9,C2. 

could therefore represent a mini-surge front as ice is transferred from the large accumulation zone 

to the ablation zone. It is unlikely that a full surge event has occurred as despite a surface velocity 

increase, the recorded surface velocities do not support a full active phase with velocities of at least 

one magnitude higher than the quiescent phase (Murray et al., 2003). Although no previous surge 

events have been recorded in the Manaslu region, Sevestre and Benn (2015) highlighted the central 

Himalaya as a potential location where surge-type behaviour is likely to occur on larger, longer and 

shallower glaciers. However, without further examination on a near-annual analysis, it is not 

possible to assess the potential development of a surge front or confine the timings of the transfer 

of ice through the icefall resulting in unstable flow. 

 

7.4.3. Importance of surface features 
Surface features including supraglacial ponds and ice cliffs have been shown to be important 

components of a glacier system and play an important role in the rates of mass loss of debris-

covered glaciers (e.g. Benn et al., 2001, 2012; Reid and Brock, 2014; Pellicciotti et al., 2015; 

Thompson et al., 2016; Watson et al., 2017a, 2018b; Miles et al., 2018) and contribute 

disproportionately to glacier-scale ablation. Regions of high relief associated with ice cliffs and 

supraglacial ponds are contemporary drivers of glacier topographic change in the Himalaya (King et 

al., 2020b; Mölg et al., 2020). In this respect, the glaciers of the Manaslu region have followed a 

similar trajectory in terms of evolution (Benn et al., 2012) with the development of proglacial lakes 

identified at Punggen Glacier over the study period consistent with terminus stagnation and a slight 

reduction in glacier extent, indicative of future progression and development of glacial lakes in this 

region. All of the study glaciers experienced increases in supraglacial pond number and area over 

the survey period covering between 0.02 to 0.23% of the total glacier area (or maximum 0.52% of 

the debris-covered area) by 2019 and accounted for up to five times the mean surface lowering 

(Figure 7.2 and Table 7.8). In the Langtang region of Nepal, up to 12.5% of glacier ablation is driven 

by supraglacial ponds, despite ponds only covering 1.69% of the debris-covered area (Miles et al., 

2018). However, this was inclusive of modelled subaqueous melt rates based on an energy balance 

model. Thus, the approach utilising DEM analysis cannot replicate subaqueous ablation or thermal 

energy transported englacially and thus represents a conservative estimation of ablation associated 

with supraglacial ponds.  
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Regional variations in contributions of ice cliffs to total glacier ablation have been suggested 

(Chapter 6). Mapped ice cliffs between 2013 and 2019 on Punggen Glacier act as hotspots with 

rates of up to 6 times the mean surface lowering yet only cover ~0.75% of the total glacier area and 

account for <1% of the total mass loss (Table 7.8). Comparatively, ice cliffs exhibited a larger 

expanse covering up to 4% total area of Hinang Glacier, but accounted for <1% total mass loss. 

These rates are substantially lower than those found on Lirung Glacier, Ngozumpa Glacier and 

Changri Nup Glacier where ice cliff backwasting accounted for 69%, 40% and 23% of the total mass 

loss respectively despite a comparatively small area coverage (2%, 5% and 7% respectively) (Sakai 

et al., 1998; Thompson et al., 2016; Brun et al., 2018). Variability between Himalayan examples 

suggest considerable regional variations of contributions of ice cliffs to mass loss and are likely to 

represent differences in the state of evolution and localised influence of the monsoon (Benn et al., 

2012; Yao et al., 2012a). Thus, it is considered that Lirung Glacier, Ngozumpa Glacier and Changri 

Nup Glacier are indicative of glaciers with well-established high relief zones and represent a 

potential future evolutionary state for the Manaslu glaciers.  

The location of such high relief zones, and the associated ablative processes, may in part be 

influenced by the glacier debris thickness, which can vary from glacier to glacier and may account 

for some of the variability when compared to Punggen Glacier and Himal Chuli Glacier (Rounce et 

al. 2018). Hinang Glacier underwent a substantial increase in supraglacial ponding (from 0 

to >43,000 m2) since 1970 and has been observed to have a highly undulating surface topography 

since the 1970s. The undulating topography and low longitudinal gradient of Hinang Glacier enables 

meltwater ponding to migrate across the surface (Figure 7.10). Thus, the dominant presence of ice 

cliffs across the surface in the 1970s is likely to have promoted accommodation space for meltwater 

coalescence further promoting enhanced ablation associated with undulating surface topography 

and evolution of such surface features (Pellicciotti et al., 2015; King et al., 2020b; Mölg et al., 2020).   

The pattern of supraglacial ponding over the monsoon season (Figure 7.13) show a maximum 

number and areal extent in the summer when meltwater generation is high and thus, pond 

expansion occurs, with a reduction towards winter despite seasonal and inter-annual variability 

(Sakai et al., 2000; Watson et al., 2016; Miles et al., 2017b). Punggen Glacier exhibited the lowest 

number and area of ponds throughout the monsoon season. Although Himal Chuli Glacier has 

higher pond volumes in May and June 2019, this is dominated by the large pond formed on the 

rockfall deposits and once it has the total ponded volume drops dramatically. The higher surface 

velocity, and dynamic flow behaviour observed at Himal Chuli Glacier, is suspected to play a 

dominant role in the drainage and refilling regime of a large pond (Figure 7.13), via the opening and 

closing of englacial drainage pathways, upon the rockfall deposits and other supraglacial ponds 

upon this glacier (Benn et al., 2001; Miles et al., 2017b; Robson et al., 2018). Thus, ponding on Himal 

Chuli Glacier is likely to be more variable with fewer persistent ponds in comparison to the 
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neighbouring glaciers. The ponded area and volume on Hinang Glacier is comparatively more stable 

throughout the monsoon season. Of the four surveyed ponds in September 2019 (Figure 7.13, Table 

7.14), H1 had only recently formed and then drained and was the smallest of the sampled ponds. 

H2, H3 and H4 persisted through the remaining monsoon season considered to represent more 

persistent ponds located on Hinang Glacier compared to higher rates of transient ponding on Himal 

Chuli Glacier in response to the variable flow acting to open and enable meltwater drainage and 

redistribute debris (Benn et al., 2001, 2012; Shukla et al., 2018). It is suspected that persistent ponds 

are typically larger and have a higher contribution to glacier-scale ablation compared to transient 

ponds (Shukla et al., 2018). Thus, as supraglacial ponds are likely to become more established and 

present more persistent features, the contributions to overall ablation may also continue to 

increase. Continued supraglacial pond monitoring could provide additional details and 

identification of dynamic flow behaviour and ablation rates associated with debris-covered glacier 

surface hydrology at glacier and regional scale.  

 

7.4.4. Regional comparisons 
Glacier mass loss has been consistent since the 1970s across the Himalaya (Bolch et al., 2019) and 

is true of the glaciers within the Manaslu region. The  mean loss over the 1970 – 2019 survey period 

of the three glaciers equates to −0.29 ± 0.05 m w.e. a−1 and is slightly lower than the global mean 

of −0.47 ± 0.20 m w.e. a−1 (Zemp et al., 2019) attributed to the high elevations and insulating effect 

of an assumed thick debris cover. The results are consistent with findings from other regions across 

the Himalaya experiencing a substantial increase in rates of mass loss over the survey period from 

1970 – 2019, yet the values of −0.93 ± 0.12 and −1.23 ± 0.15 m w.e. a−1 for Punggen Glacier and 

Hinang Glacier between 2013 and 2019, are within ranges also observed in South-eastern Tibet and 

the western Himalaya (Neckel et al., 2017; Shukla and Garg, 2019). King et al. (2020a) also observed 

higher rates of mass loss over contemporary time periods (2009 to 2018) in comparison to longer 

term mean ice loss in the Everest region. Despite, the heterogenous trends of accelerating mass 

loss across the Himalaya, Himal Chuli Glacier deviates from this trend in the latter time period 

exhibiting positive mass balances attributed to the complexities associated with top heavy 

hypsometry, highly dynamic flow behaviour and transferal of ice mass through confines within the 

glacier system (Lovell et al., 2018; King et al., 2020a).  

Structural mapping identifies the presence of both steep icefalls and ogives at all three glaciers 

(Figure 7.2) and are a relatively common feature on many debris-covered glaciers owing to their 

prevalence in tectonically active, high-mountain regions with steep topography (e.g. Khumbu 

Glacier, Miage Glacier, Lirung Glacier). The presence of the steep icefall acts as a topographic barrier 

for the debris to expand (Röhl, 2008) and thus promotes debris thickening on the glacier trunk 
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rather than continued expansion upglacier. By 2019, all three glaciers had increased in debris-cover 

extent up to the base of the icefalls. Yet, the icefalls appeared to be darkening over the survey 

period associated with finer wind-blown surface debris (Goodsell et al., 2002). With further 

expansion of debris cover expected across Himalayan glaciers in the coming decades (Herreid and 

Pellicciotti, 2020), it is expected that the icefalls will get darker still and the debris will continue to 

thicken on the lower ablation zones.  

The continued development of surface features, especially of supraglacial ponds and glacial lakes, 

since 1970s has been observed across the Himalaya (Gardelle et al., 2011; Nie et al., 2013; Liu et al., 

2015; Zhang et al., 2015; Watson et al., 2016) as has the development of high relief regions (Benn 

et al., 2017). The Manaslu glaciers also exhibit increasing net supraglacial pond area, yet the area 

of ice cliff and exposed ice has reduced and is potentially related to a reduction in crevassing, which 

can pose as a feature for initiation (Mölg et al., 2020). Furthermore, a reduction in crevassing can 

result in limited rerouting or drainage of ponded supraglacial meltwater and influence the 

hydrology of debris-covered glaciers (Quincey et al., 2009; Fyffe et al., 2019; Miles et al., 2020). 

Despite heterogenous negative mass balance recorded across the Himalaya in response to 

increasing temperatures (Bolch et al., 2019; Zemp et al., 2019), it is well established that individual 

glacier responses are highly variable (Fujita and Nuimura, 2011). Previous studies have shown 

spatial variability in the rates of mass loss of Himalayan glaciers associated with local temperature 

and precipitation trends (Mukherjee et al., 2018), glacier terminus type (Brun et al., 2019; King et 

al., 2019) and glacier surface debris cover (Brun et al., 2019; King et al., 2019). The variability 

between the three-easterly flowing Manalsu glaciers suggest that despite similar environmental 

conditions and assumed debris cover properties (e.g. lithology and thickness), individual glacier 

dynamics including glacier hypsometry, play a key role in the evolution and patterns of mass loss. 

This study highlights the importance for understanding glacier dependant flow dynamics and 

supraglacial pond development over short, contemporary assessments, as shown here to exhibit 

substantial variability, which would not be detected over comparatively long-term assessments.  

 

7.5. Summary 
The easterly flowing glaciers of the Manaslu region in the Nepalese Himalaya are exhibiting long-

term mass loss since the 1970s with a mean rate of −0.29 ± 0.05 m w.e.a−1. Accelerating rates of 

mass loss have been observed on Punggen Glacier and Hinang Glacier between 2013 – 2019 in 

addition to a reduction in surface velocity and terminal stagnation. Both glaciers have increased 

presence of supraglacial ponds and high relief zones on the low gradient ablation zones, consistent 

with increasing debris-cover extent and limited glacier length reduction. In comparison, Himal Chuli 

Glacier exhibits contrasting trends, with variable surface velocity and a period of positive surface 
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elevation change between 2013 and 2019 (+0.58 ± 0.07 m a-1). Furthermore, surface ponds were 

more variable and dominated by one large pond situated on rockfall debris, which appears to drain 

and refill. These variations are attributed to dynamic flow behaviour associated with a top heavy 

glacier hypsometry transferring ice through the icefall to the ablation zone resulting in unstable 

flow and highlights the importance for high temporal assessment of glaciers in this region.  

The glaciers in this study are expected to undergo future downwasting and stagnation, with the 

eventual development of supraglacial pond networks although no indication of this has been 

observed here. Development of the proglacial ponds at Punggen Glacier should also be monitored 

and indicate this glacier is already transitioning to an advanced state of regime 2 (Benn et al., 2012). 

Glaciers of the Manaslu regions thus show similar stages of evolution as previously seen at Miage 

Glacier in Chapters 4 to 6 and will be explored further in Chapter 8.  
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Chapter 8 : Debris-covered glacier evolution in the European Alps 
and Nepalese Himalaya: Overall discussion 
 

8.1. Overview of thesis 
This chapter will highlight the relevance of the findings in relation to the aims and objectives 

detailed in Section 1.3 and provide future prognoses for the glaciers investigated. Furthermore, a 

conceptual model of debris-covered glaciers has been developed in combination with previous 

studies and the findings from this thesis. Detailed discussions relating to the individual chapters are 

found within the respective chapters. Methodological considerations are then considered and 

suggestions for future work provided.  

This thesis has covered many of the complexities associated with debris-covered glacier evolution 

in two differing regions; the Alps and Himalaya. The thesis has evolved from having a strong focus 

on glaciers in the Manaslu region and assessing proposed methods at Miage Glacier to one where 

several research questions have focused on Miage Glacier. Furthermore, it has highlighted the 

importance of surface features, which impact glacier scale ablation rates and thus, the rate and 

trajectory of debris-covered glacier evolution. Glacier evolution has been assessed through 

identification of reduced glacier activity and establishment of surface features including small 

supraglacial ponds and ice cliffs at Miage Glacier (Chapter 4), attributed to a sustained period of 

negative mass balance and reduced ice mass transfer from the accumulation zones resulting in a 

substantial velocity reduction and a lowering of the longitudinal profile (Chapter 5). The 

contributions of supraglacial ponds and ice cliffs to ablation rates are important for glacier-scale 

ablation and Chapter 6 highlights the key processes associated with simultaneous mass loss of 

supraglacial ponds and adjacent ice cliffs. Debris-covered glacier evolution of Punggen Glacier, 

Hinang Glacier and Himal Chuli Glacier in the Manaslu region of the Nepalese Himalaya highlight 

key inter-glacier variability in relation to glacier hypsometry despite similar environmental 

conditions (Chapter 7) and emphasise the complexities associated with modelling debris-covered 

glacier evolution highlighting future avenues of research in this region. These observations have 

been used to predict future evolution of the studied debris-covered glaciers assuming a continued 

global climatic warming scenario (Sherwood et al., 2020). The findings from this thesis suggest that 

the prevalence of supraglacial ponds and ice cliffs have increased over the past decade and enhance 

the rate of ablation despite expanding debris layers. The datasets generated and analysed in this 

thesis highlight both spatial and temporal variability across debris-covered glaciers and add to the 

limited number of bathymetric surveys of small supraglacial ponds.  
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8.2. Discussion of study objectives 
8.2.1. Debris-covered glacier surface evolution  
Glacier surface evolution of four debris-covered glaciers mapped over temporal scales on the Alpine 

Miage Glacier (1952 – 2018) and Himalayan Punggen Glacier, Hinang Glacier, and Himal Chuli 

Glacier (1970 – 2019) were addressed in Chapters 4 and 7. In all cases, the glaciers showed an 

increase in debris-cover extent consistent with the development of surface features including 

supraglacial ponds and ice cliffs, yet limited terminal retreat broadly consistent with debris-covered 

glaciers in a state of negative mass balance (Benn and Lehmkuhl, 2000; Scherler et al., 2011; Benn 

et al., 2012; Rowan et al., 2015). Furthermore, surface and structural mapping of Miage Glacier 

indicated a reduction in ice mass evident by the partial collapse of Mont Blanc Glacier and reduction 

in accumulation area. Reduced glacier activity was observed over the survey periods with collapse 

features and a reduction in ice transfer from the higher accumulation zones to the lower ablation 

zones.  

Miage Glacier represents a compound and complex glacier consisting of four tributary glaciers with 

icefalls joining at the confluence with the valley tongue resulting in heavily crevassed and faulted 

glacier ice (Goodsell et al., 2002). The overall glacier dynamics appear to have gone from an active 

ice flow regime to one of reduced activity. Furthermore, the development of surface features has 

dramatically increased since the 1990s with an increasingly undulating surface topography 

indicative of a development from regime 1 with limited water storage throughout the twentieth 

century, towards regime 2 with increasing water storage by 2018 (Benn et al., 2012). Similarly, 

glaciers in Manaslu exhibited ice cliffs and an undulating surface topography prior to the 1970s yet 

limited supraglacial ponding.  An increase in supraglacial ponds and the development of proglacial 

lakes at Punggen Glacier since 2013 marks a similar evolution towards regime 2. These trends in 

the development of surface features on debris-covered glaciers have previously been 

acknowledged (e.g. Sakai et al., 2002; Benn et al., 2012; King et al., 2020b), yet few studies have 

previously assessed this on glaciers in different regions to assess regional and environmental factors 

in debris-covered glacier evolution. Comparison of the evolution of surface features at Miage 

Glacier and the Manaslu glaciers, appear to be broadly consistent.  

Mapping of the glaciers highlighted similar topographical features at each of the investigated 

glaciers, including icefalls and production of ogives. All four glaciers exhibited at least one icefall, 

which act to transfer and regulate ice mass between the upper accumulation zones and lower 

ablation zones via the icefalls. The presence of the icefalls symbolises a topographic constraint to 

further up-glacier debris expansion and is therefore likely to result in debris thickening on the lower 

ablation area in the future. Ogives were observed at the base of all icefalls and reduced spacing of 

bands on Miage Glacier suggest decreased ice flux over the survey period (Nye, 1958; Goodsell et 

al., 2002). Ogives on the Manaslu glaciers did not show a distinct reduction in spacing, partly 
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considered to be linked to increased ice flux from comparatively larger accumulation areas through 

the icefall. However, increased debris cover over the survey period in these regions are likely to 

have to have limited visibility and thus analysis. 

Supraglacial ponds developed either before or after a bend in the valley topography at both Miage 

Glacier and Himal Chuli Glacier, which altered the direction of glacier flow and likely represents a 

compressional regime in this region (e.g. Kraaijenbrink et al., 2016b). This region of compression is 

likely to be important for regulating or limiting surface water movement and thus affecting the 

hydrological drainage system (Fyffe et al., 2019). Valley topography is therefore an important 

consideration when assessing and predicting the distribution of supraglacial pond development. 

Previous studies have also highlighted the relevance of valley topography on pond development 

including basal topography and the presence of overdeepenings associated with regions of thicker 

ice (e.g. Figure 3.6 and Figure 3.13) for potential pond formation (Linsbauer et al., 2016; Magnin et 

al., 2020). These features are likely to be common across debris-covered glaciers due to the 

development of a thick debris cover in highly tectonically active regions with steep topography. 

Therefore, valley and bed topography should be accounted for when predicting the distribution of 

ponds and where locations of large, potentially hazardous, lakes are likely to form consistent for 

both Miage Glacier and the Manaslu glaciers. 

 

8.2.2. Temporal analysis of debris-covered glacier dynamics  
The evolution of glacier dynamics through assessment of glacier surface elevation change and ice 

velocity at Miage Glacier (1990 – 2018) and the Manaslu glaciers (1970 – 2019) were assessed 

through remote sensing approaches as discussed in Chapters 5 and 7. All glaciers are in a state of 

sustained negative mass balance over the full observation periods, consistent with reduced surface 

velocity rates and up-glacier migration of stagnating ice, low surface gradients, migrating up-glacier 

surface debris cover and the development of surface features with an increasingly undulating 

surface topography (Quincey et al., 2009; Benn et al., 2012; Bolch et al., 2012; Rowan et al., 2015; 

Dehecq et al., 2019). Despite these comparative similarities between Miage Glacier and the 

Manaslu glaciers, inter-glacier variability over spatial and temporal scales exist.  

All of the study glaciers exhibited long-term negative mass balance; however, rates observed at 

Miage Glacier were much higher between 1990 – 2018 (−0.86 ± 0.27 m w.e. a−1) compared to those 

observed in Manaslu between 1970 – 2019 (mean of −0.29 ± 0.05 m w.e. a−1). This could reflect 

increasing surface lowering trends in recent decades and the longer observation period for Manaslu. 

However, surface elevation change slowed from −1.07 ± 0.13 m a−1 between 1990 and 2008, to 

−0.85 ± 0.01 m a−1 between 2008 and 2018 at Miage Glacier indicating complex, nonlinear changes 

over time. Furthermore, mass balance of the Manaslu glaciers showed highly variable rates with 
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periods of positive mass balance over the 2013 – 2019 period. This is attributed to the effect of 

local precipitation and increased snowfall at higher elevations (Figure 3.11 and Appendix 1) 

influenced by monsoon climates, in addition to dynamic flow behaviour (Kääb et al., 2012; Yao et 

al., 2012a; Gardelle et al., 2013). The inconsistency of the glacier dynamics indicates individual 

glacier controls relating to glacier hypsometry whereby the equidimensional glaciers including 

Miage Glacier, Punggen Glacier and Hinang Glacier underwent limited variability in comparison to 

the very top heavy Himal Chuli Glacier. The complex, nonlinear changes of debris-covered glaciers 

over differing spatial and temporal scales are therefore considered to be associated with local 

temperature and precipitation trends (Mukherjee et al., 2018), and glacier surface debris cover 

(Brun et al., 2019; King et al., 2019), including differences in spatial debris cover thickness and local 

properties are likely to affect the temperature profile and energy available for melt at the ice 

surface (Gibson et al., 2017a; Rowan et al., 2021). Local controls therefore have a substantial impact 

on the energy budget and mass loss rates of individual debris-covered glaciers.  

Glaciers in Manaslu exhibited low surface gradients (<5°) whereas Miage Glacier had comparatively 

higher gradients (>6°) and higher rates of surface gradient change over the study period. Punggen 

Glacier and Himal Chuli Glacier began to develop an inversion in surface gradient over the 

observation period consistent with previous studies of debris-covered glaciers in combination with 

reductions in surface velocity (Anderson and Anderson, 2018; Dehecq et al., 2019). Reductions in 

surface velocity between 1991 – 1992 and 2018 – 2019 were observed on all three Manaslu glaciers 

by 19 – 45%, yet Hinang Glacier showed very little change in surface gradient and also the smallest 

percentage decrease in surface velocity (Table 7.11). Miage Glacier also showed a dramatic 

reduction in glacier surface velocity (46%) between 1990 and 2018 attributed to a reduction in ice 

flux from the higher elevation accumulation zones. Surface velocity of Miage Glacier and Punggen 

Glacier were similar in the most recent observation periods (16 and 18 m a-1 respectively), while 

Hinang Glacier and Himal Chuli Glacier exhibited rates in excess of 37 and 43 m a-1 respectively. 

Results were comparable to other debris-covered glaciers across the Himalaya and indicative of 

surface velocity reductions in recent periods (e.g. Kääb, 2005; Quincey et al., 2009; Heid and Kääb, 

2012; Haritashya et al., 2015). 

The establishment of surface features are important for assessing glacier-wide mass balance as they 

represent regions of enhanced ablation (e.g. Sakai et al., 2000; Buri et al., 2016b; Miles et al., 2016; 

Thompson et al., 2016), but the variability in rates of enhanced loss over spatial and temporal scales 

is significant. The presence of supraglacial ponds and ice cliffs at Miage Glacier serve to enhance 

mass loss locally and were responsible for ~5% of the total mass loss between 2016 and 2018, 

despite only covering 1.3% of the total glacier area. In comparison, ice cliffs have shown a sustained 

presence since the 1970s on the Manaslu glaciers, promoting a highly undulating surface 

topography and accounted for up to 4.6% of the glacier area on Hinang Glacier, yet only 2.4 times 



Page | 152  
 

the mean surface lowering. Ice cliffs appear to have a stronger influence in mass loss at Miage 

Glacier compared to Manaslu glaciers despite accounting for a lower density. Thus, such 

discrepancies in regional comparisons (e.g. Sakai et al., 1998; Reid and Brock, 2014; Thompson et 

al., 2016; Brun et al., 2018; Mölg et al., 2019) are considered to represent differences in the state 

of evolution and localised influence of the monsoon (Benn et al., 2012; Yao et al., 2012a) in addition 

to mapping and methodological differences. Attempts to standardise a method for ice cliff 

detection and quantification of total ablation should therefore be considered (e.g. Kneib et al., 

2021).  

Supraglacial ponds have become more pronounced although high levels of seasonal and annual 

variability were observed (Miles et al., 2017b). Nevertheless, such surface features promoted 

additional mass loss and accounted for up to six times the mean surface lowering rates (Table 7.10). 

Thus, supraglacial ponds and ice cliffs do not appear to outweigh sub-debris melt at the glaciers in 

this study and may relate to the relatively small pond sizes and highly transient features over the 

monsoon and ablation seasons (Hambrey et al., 2008; Shukla et al., 2018).  

 

8.2.3. The importance of surface features on topographic evolution 
Supraglacial ponds, ice-marginal lakes and their associated ice cliffs were observed to have 

significantly higher ablation rates than the surrounding debris-covered terrain on Miage Glacier and 

the Manaslu glaciers. Supraglacial ponds and ice cliffs at Miage Glacier increased ablation rates by 

a factor of eight exhibiting their importance in both overall ablation and the evolution of debris-

covered glaciers. Furthermore, ice cliffs with mean annual retreat rates of −8 m a−1 were observed. 

Analysis of supraglacial ponds and ice cliffs support previous studies, which indicate they play an 

important role in the rates of mass loss of debris-covered glaciers (e.g. Benn et al., 2001, 2012; Reid 

and Brock, 2014; Pellicciotti et al., 2015; Thompson et al., 2016; Watson et al., 2017a, 2018b; Miles 

et al., 2018). Although a thicker and more extensive debris cover has the potential to reduce 

ablation, some debris-covered glaciers in the Himalaya have experienced similar rates of mass loss 

to clean-ice glaciers; a phenomenon referred to as the ‘debris-cover anomaly’ (Pellicciotti et al., 

2015; Vincent et al., 2016). This behaviour results from high rates of enhanced localised ablation in 

the vicinity of supraglacial ponds and ice cliffs (e.g. Buri et al., 2015; Miles et al., 2016). However, 

these effects do not seem to be prevalent at either Miage Glacier or the Manaslu glaciers where 

the development of supraglacial ponds are currently limited with no indication of pond networks 

forming. Thus, the insulating effect of debris cover appears to have had an overall more important 

effect on the mass balance than the mass loss associated with ice cliffs and supraglacial ponds (e.g. 

Hambrey et al., 2008).  
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Pond morphology suggests that the maximum depths are often found approaching the highest 

section of ice cliffs and it is considered that the positioning of the ice cliffs, drive the water 

circulation and heat transfer within the pond. Thompson et al. (2016), Miles et al. (2016) and 

Watson et al. (2018b) observed similar trends on the Ngozumpa Glacier, Lirung Glacier and Khumbu 

Glacier respectively. However, it is observed on both Miage Glacier and Hinang Glacier that where 

large ice cliffs exist on multiple sides of the ponds, either a central deep section forms, or multiple 

deep basins form. Watson et al. (2018b) suggested that this trend did not extend to smaller ponds 

and central basins were likely to represent newly exposed ice cliffs or regions of thick basal debris 

restricting subaqueous melt (Mertes et al., 2017).  

This study has shown the development of small supraglacial ponds (<10,000 m2), which have 

become established on Miage Glacier and Hinang Glacier, are important for glacier-scale ablation. 

Yet, the inclusion of small supraglacial ponds in global bathymetric datasets remain limited (Watson 

et al., 2016). When combining the data points from Miage Glacier and Hinang Glacier with those of 

Cook and Quincey (2015) and Watson et al. (2018b) area-volume assessments, the pond area-

volume power law relationships are supported (Table 8.1).  

Table 8.1: Volume-area relationships for supraglacial ponds and glacial lakes represented by 
regression values (R2) when combined with data from Cook and Quincey (2015) and Watson et al. 
(2018b).  

 V-A relationship Power law 
R2 

All glacial lakes area-volume (incl. Cook and Quincey, 2015; 
and Watson et al., 2018). 

V=0.178A1.38 0.99 

Supraglacial ponds area-volume (incl. Cook and Quincey, 
2015; and Watson et al., 2018 data).  

V=0.487A1.34 0.99 

Supraglacial ponds <10,000 m2 (incl. Miage Glacier, Hinang 
Glacier and Watson et al. 2018 data).  

V=0.196A1.37 0.93 

 

Figure 8.1 shows that the ponds at Miage Glacier and Hinang Glacier fit with the relationships 

previously identified by Cook and Quincey (2015). As the ponds are comparatively small, and exhibit 

highly transient features, the future trajectory is likely to follow that of growing supraglacial ponds 

but may change if supraglacial ponds coalesce and networks begin to form.  
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Figure 8.1: Supraglacial ponds at Miage Glacier and Hinang Glacier plotted alongside results from 
Cook and Quincey (2015) on logarithmic scales. Ponds gathered within this study are consistent 
with growing supraglacial ponds.  

 

Assessment of the timings of development, expansion, and drainage show high levels of variability 

associated with both the Alpine ablation season and the Himalayan Monsoon with a strong decline 

in supraglacial ponding area towards winter (Watson et al., 2018b). At both Miage Glacier and the 

Manaslu glaciers, although some supraglacial ponds persisted throughout the season there was a 

high rate of drainage events supporting previous studies, which associate increased meltwater 

generation with the opening of englacial conduits (Gulley and Benn, 2007). However, in this study 

winter drainage was not assessed and may account for additional pond variability. Furthermore, 

the ice-marginal Lake Miage was noted to have drained at the end of the ablation season multiple 

times and could be draining on an annual timescale despite it not always being recorded. Thus, its 

size and expansion is considered to be predominantly driven by the early season snow melt.  

To determine whether there were any common controls on pond development on both Miage 

Glacier and the Manaslu glaciers, a basic analysis using correlation and generalised linear models 

(GLMs) were used to compare pond area (from which pond depth and volume have a previously 

assessed relationship (see Cook and Quincey, 2015; Watson et al., 2018b) against pond altitude, 

glacier ice thickness, surface velocity, distance from the terminus and glacier width. For the analysis 

5 ponds at Miage Glacier, 2 ponds at Punggen Glacier, 8 ponds at Hinang Glacier and 11 ponds at 

Himal Chuli Glacier were included (Table 8.2).  
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Table 8.2: Correlation and GLM analysis of pond area and glacier dependant variables.  

Pond area vs. R2 value GLM p-value 
Altitude 0.0552 0.204 
Ice thickness 0.0041 0.762 
Velocity 0.0908 0.345 
Distance from the terminus 0.0004 0.683 
Glacier width 0.0869 0.458 

 

Analysis shows that there is no correlation or statistical significance in the assessed glacier variables 

on pond area. However, when using GLMs, altitude and velocity indicate there might be a 

relationship despite not being statistically significant in this case. Further assessment should be 

carried out using a global database of supraglacial ponds (e.g. Cook and Quincey, 2015; Watson et 

al., 2018b), which could be further developed to determine pond specific details and assess 

whether there are generic glacier controls, which could aid identification of regions prone to 

supraglacial pond development and aid modelled predictions of debris-covered glacier evolution.  

 

8.3. Implications and importance of study 
8.3.1. Future prognosis of Miage Glacier 
Given that climate predictions suggest temperatures will increase (Sherwood et al., 2020), it is 

anticipated that Miage Glacier will continue to experience negative mass balance in the future. 

Based on extrapolation of dynamic trends outlined in this study since 1990, we suggest that Miage 

Glacier will continue to thin, that the glacier will continue to slow, and that debris cover will 

continue to expand upglacier, as well as thicken. It is also possible that the overall glacier profile 

will become shallower although changes in the gradient have been relatively modest since 1975 

(Smiraglia et al., 2000). Ablation is likely to be enhanced at the base of the tributary glaciers 

resulting in thinning and eventual decoupling and recession from the main stem of Miage Glacier. 

Reduced inputs of ice will likely lead to further reductions in surface velocity and stagnation, which 

will promote flattening and the inability of the main glacier trunk to evacuate englacial and 

supraglacial sediment. Indeed, it is also likely that sediment inputs from valley sides will be 

enhanced with continued climate warming (Deline, 2009; Ravanel et al., 2017), further promoting 

expansion and thickening of the debris cover (Stewart et al., 2021).  

Extrapolation of other trends and elements of the dataset become far more speculative because of 

the non-linear changes evident in some of our datasets. Perhaps most notable among these 

uncertainties is the future role that supraglacial ponds and adjacent ice cliffs might play in glacier 

mass balance. It is evident from the dataset that ponds and ice cliffs represent ablation hotspots. 

However, their current distribution is limited to a relatively small zone upglacier from the terminal 

lobes where the main trunk turns into Val Veny (Figure 4.7). Even within this zone, ponds and ice 
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cliffs are highly focussed and are not pervasive features at present. A key limitation on their future 

development will be that the glacier remains, overall, relatively steep (~5° on the valley tongue 

and >8° on the terminal lobes (Figure 5.7) (e.g. Reynolds, 2000; Quincey et al., 2007). In accordance 

with observations on other debris-covered glaciers (e.g. Benn et al., 2012; Rowan et al., 2015), there 

is evidence that thinning of the terminal lobes is reducing under a thickening debris cover, and that 

ablation is focused in the cleaner ice zone at the base of the tributary glaciers, with the overall 

effect of flattening the glacier profile (Smiraglia et al., 2000). Further slowdown of the glacier may 

also be conducive to pond development (Quincey et al., 2007). The data show that changes in ice 

cliffs and ponds, and their contributions to mass balance, are very complex and will require 

continued monitoring to unravel their overall significance for the future of the glacier. On the one 

hand, water storage in supraglacial ponds has increased, as has pond density; on the other hand, 

pond contribution to ablation has slowed. Likewise, ice cliff backwasting can be substantial (up to 

−8.15 m a−1), but ice cliff density and contribution to ablation have both reduced recently. 

The development of surface ponds and ice cliffs has been shown to be very important for the 

evolution and down-wasting of debris-covered glaciers in other locations (e.g. Benn et al., 2012; 

Pellicciotti et al., 2015; Thompson et al., 2016; Watson et al., 2017b). In the Himalaya, the 

development and coalescence of ponds, and the ultimate development of a moraine-dammed 

proglacial or supraglacial lake characterises ‘Regime 3’ in the model of Benn et al. (2012). It is also 

notable that ablation rates associated with ice cliffs are much lower for Miage Glacier than for 

Himalayan glaciers (e.g. Thompson et al., 2016; Watson et al., 2017b). Ultimately, it is unclear 

whether Miage Glacier will develop toward this phase, but it does not appear to be transitioning to 

Regime 3 currently or in the near future and may remain in Regime 2 for the foreseeable future. 

 

8.3.2. Future prognosis of the Manaslu glaciers 
With reference to the 3-stage model of debris-covered glacier evolution (Benn et al., 2012), glaciers 

of the Manaslu region appear to be in a more advanced phase of decay (‘Regime 2’) since the 1970s. 

This is exhibited by overall negative mass balances and downwasting ice, increased surface water 

storage, expanding debris cover and glacier slowdown, despite Himal Chuli Glacier undergoing 

periods of comparative positive mass balance and variable surface velocity. Thus, it is likely that as 

climate is expected to continue to warm, these glaciers will continue to thin, stagnate, and undergo 

additional debris-cover development with comparatively little terminus reduction (Rowan et al., 

2015; Herreid and Pellicciotti, 2020). Furthermore, due to the already low surface gradient, it is 

likely that surface ponding will increase and further inversion of the longitudinal profiles will 

develop (Rowan et al., 2015; Anderson and Anderson, 2016).  
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Although, supraglacial ponds have increased during this time and ice cliffs have been present since 

the 1970s, they do not appear to be expanding dramatically and there is no evidence of coalescing 

ponds or development of pond networks (Figure 7.2 to Figure 7.4). Thus, it is considered that these 

ponds are currently unlikely to reach the hydrological base indicative of a transition towards regime 

3 in the near future (Benn et al., 2012). There is currently a lack of evidence to support the 

development of a supraglacial pond network on the lower sections of the glaciers despite them 

showing a reduction in surface velocity and low surface gradients. Thus, in the long-term continued 

development of ponding may increase and result in a network and the potential for ponds to 

coalesce and form larger ponds. Furthermore, many of the ponds assessed here are highly transient 

features, although often appear to refill in similar locations and thus increasing numbers of 

persistent ponds may start to be observed. If this scenario occurs, it is likely that rates of loss 

associated with these features will then increase and be comparative to those observed elsewhere 

in the Himalaya (Sakai et al., 1998; Thompson et al., 2016; Brun et al., 2018; Miles et al., 2018). 

Punggen Glacier has existing proglacial lakes, which have developed close to the glacier terminus, 

yet have shown little change over the survey period and have not undergone rapid expansion. Thus, 

it would appear that the easterly flowing glaciers in Manaslu are in an advanced state of regime 2, 

but do not yet indicate a transition to regime 3 (Quincey et al., 2009; Benn et al., 2012; King et al., 

2018). In the long-term future with enhanced climatic change, the glaciers may continue to develop 

on this trajectory towards regime 3 and continued monitoring should be undertaken.  

 

8.3.3. Conceptual model of debris-covered glacier evolution 
Alpine and Himalayan debris-covered glacier evolution, as derived from the four glaciers studied in 

this thesis, indicate largely similar trajectories of debris-covered glacier evolution despite individual 

trends and complexities. Thus, it supports previous studies which have referred to Miage Glacier as 

a ‘Himalayan type glacier’ (Deline and Ravanel, 2014). Here, a conceptual model of debris-covered 

evolution is presented with regard to the data collected here and with reference to existing 

literature.  

As summarised from Chapters 6 and 7, Miage Glacier has transitioned to a phase dominated by 

‘Regime 2’, yet the Manaslu glaciers with the development of proglacial lakes (Punggen Glacier) 

and increased presence of supraglacial ponds and comparatively greater undulating topography 

with large ice cliffs, characterise a transition towards an advanced stage of ‘Regime 2’ in the model 

of Benn et al. (2012). It is also notable that ablation rates associated with ice cliffs, and overall 

density, are much lower for Miage Glacier than for the Himalayan glaciers (e.g. Thompson et al., 

2016; Watson et al., 2017b). Thus, it would indicate that Miage Glacier is limited by a comparatively 

steep surface gradient and is therefore in an earlier phase of debris-covered glacier evolution in 
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comparison to the Manaslu glaciers. As such, the Manaslu glaciers may start to form a network of 

coalescing ponds and hydrological base level lakes earlier than would be expected for Miage Glacier.  

The stages of debris-covered glacier evolution include a build-up of debris and increasing debris 

thickness across the glacier surfaces in response to a nearly global glacier recession observed since 

the LIA (Deline, 2005; Rowan, 2017; Shukla and Garg, 2019) (Figure 8.2). The LIA was a relatively 

short period of widespread cooling in the northern hemisphere, which occurred between 1400 and 

1700 in the common era (CE) and resulted in a LIA advance around 1300-1600 CE. However, studies 

identified variable timing of the LIA across the Central Himalaya in response to the influence of the 

Westerlies and the monsoon (Rowan, 2017). Since the LIA, climate has been warming and resulted 

in global negative mass balance and destabilisation of valley walls, which develops a debris cover 

on the glaciers below. Once a thick debris cover has established over the majority of the glacier 

surface, surface ablation is likely to reduce with variable enhanced melt due to differential debris 

thickness (Østrem, 1959) coinciding with surface velocity reduction. Thus, an undulating surface 

topography (e.g. Bartlett et al., 2021) develops with the ability for meltwater to pond in surface 

hollows and steep sections where debris cannot stabilise expose ice and begin to form ice cliffs 

(Röhl, 2008). These features develop enhanced hotspots for ablation and if conditions for continued 

develop allow, will develop to form hydrological base level lakes with coalescing ponds and the 

development of pond networks. Thus, the development of regime 3 depends greatly on the ability 

of coalescing ponds and networks to form promoting a state of advanced decay and disintegration 

with a decoupled margin (Benn et al., 2012).  

The proposed conceptual model advances our existing understanding of debris-covered glacier 

evolution by integrating glacier specific and regional considerations (Figure 8.2). The inclusion of glacier 

hypsometry, topographical constraints and local meteorological variability have been incorporated into 

the framework of the 3-stage model as proposed by Benn et al. (2012).  
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Figure 8.2: Revised conceptual model of debris-covered glacier evolution developed from the Benn 
et al. (2012) model.  

 

8.3.4. Importance of this research 
Although a thicker and more extensive debris cover has the potential to reduce ablation, some 

debris-covered glaciers in the Himalaya have experienced similar rates of mass loss to clean-ice 

glaciers; a phenomenon referred to as the ‘debris-cover anomaly’ (Pellicciotti et al., 2015; Vincent 

et al., 2016). This behaviour results from high rates of enhanced localised ablation in the vicinity of 

supraglacial ponds and ice cliffs (e.g. Buri et al., 2015; Miles et al., 2016). However, these effects do 

not seem to be prevalent at Miage Glacier or the Manaslu glaciers where the development of ice 

cliffs and supraglacial ponds is limited. Thus, the insulating effect of debris cover appears to have 

had an overall more important effect on the mass balance than the mass loss associated with ice 

cliffs and supraglacial ponds (e.g. Hambrey et al., 2008).  

Recent studies of glacier mass balance in Annapurna located to the west of Manaslu showed no 

significant difference between debris-covered and clean-ice glaciers (Lovell et al., 2019). 

Furthermore, glacier mass loss of the Manaslu glaciers show comparative rates of mass loss to those 

previously observed in across the eastern and central Himalaya (−0.22 to −0.33 m w.e. a−1) (Kääb et 

al., 2012; Gardelle et al., 2013) from 1970 to 2019 but substantial increase since 2013. Robson et 

al. (2018) previously discussed the complexity of mass loss on clean-ice glaciers and debris-covered 

glaciers in the Manaslu region depending on debris thickness. Data from 16 clean-ice glaciers in 

Manaslu exhibited a neutral elevation change (0.00 m a−1) between 2000 and 2013, compared to 

13 debris-covered glaciers with a negative elevation change (−0.29 m a−1) indicating that debris-

covered glaciers are losing more mass than clean-ice glaciers in the region highlighting the 

complexity of mass loss in relation to local and glacier dependent factors.  
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This research highlights the need for continued monitoring of debris-covered glaciers to further 

understand the processes and controls on the dynamics and response to future climatic change. 

Despite similarities and homogeneity in terms of global negative mass balance and reduced surface 

velocity, this research supports previous studies, which highlighted high levels of variability and 

complexity in glacier response to climatic warming. Understanding these variations and reasons for 

such, is important to enable future research to adequately model climatic response, quantify and 

aid water resource management, especially for those in regions such as high-mountain Asia where 

such resources are vital to livelihoods, and to mitigate against the development of potentially 

hazardous proglacial lakes.  

Although glacial lakes at Miage Glacier are unlikely to reach the hydrological base and pose a GLOF 

risk, the presence of increased ponding affects water storage and glacier runoff. The proglacial river 

from Miage Glacier delivers meltwater into the river Dora di Veny, which consequently flows into 

the River Po, the longest river in Italy. Thus, although water storage does not pose an imminent risk 

at Miage Glacier, future water resources and seasonal fluctuations may be affected downstream. 

Glacial hazards have substantial implications in this region as Val Veny is a well populated region as 

highlighted by the events at the nearby Brenva Glacier in 1997 when a large avalanche caused 

significant damage and killed two skiers (Giani et al., 2001), and the risk of collapse at Planpincieux 

Glacier in September 2019 which resulted in evacuation of local residents (Giordan et al., 2020). In 

comparison to Miage Glacier, the glaciers in the Manaslu regions of the Himalaya provide seasonal 

runoff to the Buri Ghandaki River, along which many of the small villages along the Manaslu trekking 

circuit are situated. If the proglacial lakes at Punggen Glacier and supraglacial ponds begin to 

coalesce, the potential risk of large lakes forming, and risk of a GLOF event is heightened and thus, 

future monitoring should be considered. The monastery at the base of Hinang Glacier would also 

be at risk in the event of a GLOF event from higher up the valley. Risk management would require 

the Nepalese authorities and governments to monitor and if decided necessary, put in place 

drainage or monitoring systems as implemented at Belvedere Glacier (Haeberli et al., 2002; 

Diolaiuti et al., 2003) to control the safe drainage of potentially hazardous and rapidly growing lakes 

that may form in the future.  

 

 

8.4. Limitations and future work 
8.4.1. Methodological considerations for remote sensing techniques 
There are several limitations to this research that need to be acknowledged and several further 

research tasks, which would be beneficial to aid our understanding of debris-covered glacier 

evolution and the processes involved. First, as highlighted in Chapter 6 and Chapter 8, the extraction 

of DEMs from SPOT and Pleiades imagery is dependent upon available, good quality imagery, which 
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is both clear of snow and cloud. Availability of imagery over Miage Glacier provided good temporal 

coverage, yet several extracted datasets (from 2000 and 2005) produced high errors and were not 

useable. In comparison, data coverage of the Manaslu region was limited with reduced satellite 

coverage. Pre-existing DEMs such as the HMA datasets provided by the NSIDC (Shean, 2017) were 

investigated but did not provide coverage of the study area other than the data from 2013. 

Furthermore, periods of snow free glaciers often coincided with heavy cloud cover associated with 

the monsoon and hence the data used in this study from 2016 represents the best available data 

despite the acknowledgement of potential errors associated with snow cover in the higher 

elevations. Therefore, further analysis using high-temporal data of Himal Chuli Glacier to further 

assess the dynamic flow behaviour will require requests for satellite acquisition data to cover this 

region. Additional sources of imagery such as the US archives for aerial could also be explored. 

Continued monitoring of overall mass balance and surface velocity at high-temporal resolution at 

Miage Glacier and the Manaslu glaciers to assess their continued evolution and trajectories in 

relation to Benn et al.’s (2012) model would be highly beneficial to unpick the complexities 

previously discussed especially those in recent periods.  

DEM differencing analysis and geodetic mass balance calculations were based on the assumption 

that all surface elevation change is due to ice mass fluctuations. However, some of these fluxes are 

resultant from debris inputs such as rockfall or avalanche debris onto the glacier surface (Figure 

5.3). Although larger events have the potential to be identified and accounted for (e.g. Figure 5.3), 

comparatively smaller events are not necessarily identifiable dependent upon timing and imagery 

resolution, especially when observation periods cover a long temporal period (e.g. 20+ years). It is 

often assumed that these impacts are negligible on the overall glacier mass balance; yet they are 

likely to have a bigger influence on higher-temporal assessments. Newly developed techniques such 

as GERALDINE (Smith et al., 2020) could be incorporated into future DEM assessments to account 

for supraglacial debris inputs and eliminated from ice mass calculations.  

Quantification of the contribution of supraglacial ponds and ice cliffs to overall ablation rates also 

pose some methodological assumptions. By using a simple approach and only extracting the 

corresponding elevation changes within the extent of the ponds and cliffs, the attribution of distal 

ablation was excluded and thus likely to represent an underestimation. However, distal ablation is 

likely to be confined to englacial channels and accounting for this using a GIS based approach is 

difficult to assess. Thus, additional techniques including the use of ground penetrating radar (GPR) 

could be used to assess englacial conduits in the vicinity of supraglacial ponds could provide an 

ability to quantify additional subsurface ablation. 

Assessment of the contribution of supraglacial ponds and ice cliffs to overall ablation rates also 

negates emergence velocity quantification. The development of a method for improving 
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quantification of emergence velocity using raster data for velocity, ice thickness and mass transfer 

would improve quantification of spatial and temporal variations in emergence velocity. Previous 

methods to calculate emergence velocity are based upon a theoretical line across the glacier 

surface to quantify ice flux through that line (e.g. Westoby et al., 2020). However, it is possible that 

an improved approach could be derived utilising the gridded raster layers for each of the required 

components (e.g. surface velocity, ice thickness etc.) to derive a higher resolution temporal 

assessment.  

Mapping of surface features is also open to subjective bias, especially when using older 

panchromatic imagery. Segmentations and classifications were used to help remove an element of 

subjectivity but is difficult to eliminate entirely. Recently developed semi-automated approaches 

for mapping ponds and cliffs could help reduce this issue in future studies (Anderson et al., 2021; 

Kneib et al., 2021). In addition to the high spatial and temporal assessment of surface features on 

Miage Glacier, GPR data collected in March 2018 could be used to further assess englacial and 

subsurface structures in relation to debris entrainment, surface features and surface evolution.  

Although statistical assessment here does not show any strong relationships (Table 8.1), a global 

assessment using a larger database to statistically assess the ‘controls’ on supraglacial pond size 

and location could help constrain a number of these potentially important factors. These future 

research plans could add to the wealth of data presented in this thesis and to the assessment of 

debris-covered glaciers in high-mountain regions around the world.  

 

8.4.2. Logistical considerations with fieldwork 
The first field visit to Miage Glacier in June/July 2017 and subsequent visit in June/July 2018 enabled 

a wealth of data to be collected. Comparatively, fieldwork in the Himalaya proved to be more 

complicated and costly. Despite our best plans and organisation with a local guide, we were unable 

to visit the Himal Chuli Glacier as we had initially planned due to the access path being blocked. 

Thus, we continued along the Manaslu trekking circuit to access Hinang Glacier. Due to the scale of 

the glacier, limited time available and time to recharge batteries with a generator, we were not 

able to access and survey as many ponds, which limited the use and analysis planned for the 

resulting dataset. It would also be beneficial to resurvey the ponds at both Miage Glacier and 

Hinang Glacier to continue monitoring their development and influence of glacier mass loss and 

evolution, but this was beyond the scope and budgets of this research.  

Replication of the bathymetric surveys to asses future development of the ponds at Miage Glacier 

and Manaslu glaciers in comparison to the future prognoses and predictions provided in this thesis 

would provide high-resolution detail regarding the processes responsible for debris-covered glacier 

evolution and the important components for such.  
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An enlaps Tikee time-lapse camera was installed at Hinang Glacier in September 2019 (Figure 7.1) 

in the hope of using it for assessment of surface velocity and supraglacial pond dynamics including 

timings and mechanisms associated with drainage. Further analysis of temporal variations for 

supraglacial pond variability and evolution including drainage patterns could help provide high 

temporal and spatial details that could be applied to glaciers with highly dynamic flow behaviour in 

an attempt to constrain glacier dynamics.  
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Chapter 9 : Conclusions 
This study aimed to investigate temporal and spatial debris-covered glacier dynamics in the Alpine 

European Alps and the Himalayan Manaslu region using a range of in situ data collection methods 

and remotely sensed data, enabling comprehensive analysis of both glacier-scale dynamics and 

detailed glaciological processes. It has found broadly similar trends in debris-covered glacier 

response in both the Alps and Himalaya associated with sustained periods of negative mass balance, 

reduced surface velocity, flattening of the longitudinal profile and the development of surface 

features. However, individual glacier variability complicates the narrative and general trends. The 

results add to the current knowledge base and offer a unique and valuable insight into the 

variability of debris-covered glacier responses in two comparatively different environmental 

settings aiding our understanding of past and future debris-covered glacier evolution.  

Structural analysis of Miage Glacier shows a transition from an active glacier in the 1950s to one of 

prolonged deterioration by 2018. Miage Glacier has transitioned from a period of active flow and 

limited surface water storage during the twentieth century, to one of downwasting ice since 1990 

with continued thinning (−0.86 ± 0.27 m w.e. a−1 between 1990 to 2018), increased surface water 

storage (>6000 m2), expanded debris cover (+10%) and dramatic reduction in glacier surface 

velocity (-46%). A reduction and deceleration of thinning rates is attributed to an expanding and 

thickening debris cover; resulting in complex, nonlinear changes over time. Quantification of the 

mass loss associated with the presence of supraglacial ponds and ice cliffs support the importance 

of such features as localised regions of enhanced ablation despite their relative small size, which 

have previously been disregarded and highlight the importance for inclusion in glacier-wide 

assessments. Yet the surface features observed appear to have not passed a threshold in which 

they outweigh sub-debris ice loss and are likely to play a significant role in future positive feedbacks 

promoting further glacier ablation through increased absorption of solar radiation and transmission 

to the glacier ice. Furthermore, potential tipping points in glacier evolution can be identified from 

the dataset from Miage Glacier with a substantial increase in the number and area of supraglacial 

ponds across the glacier surface since 2004. The timing indicates a lagged glacier response to 

warming temperatures since 1990 of approximately 14 years in the Alps. The co-evolution of pond 

and ice cliffs highlight the importance of understanding the simultaneous development and 

glaciological processes. In the future, it is possible that positive feedbacks between ponding, ice 

cliff backwasting and surface topography will enhance ice loss associated with surface features 

promoting further growth and thus have further implications for glacier-wide mass balance and 

glacier dynamics.  

Glaciers in the Manaslu region experienced long-term negative mass balance (mean −0.29 ± 0.05 m 

w.e. a−1), overall reduced surface velocity and increased presence of supraglacial ponding between 

1970 and 1990, yet show distinct individual variability despite similarities in environmental setting. 
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Such variability is partly attributed to dynamic flow behaviour of Himal Chuli Glacier as assessed by 

glacier hypsometry promoting fluctuations in mass flux and surface velocity. Ice mass loss is likely 

to be influenced by glacier hypsometry with glaciers with a top-heavy hypsometry likely to be able 

to sustain longer response times and withstand short-term climate fluctuations. However, glacier 

response is also likely to be influenced by the altitudinal range and future glacier response will be 

affected by altitudinal variations in precipitation and temperature. Thus, glacier hypsometry and 

altitudinal range are likely to be key controls on glacier response and have significant influences on 

short term glacier behaviour, which are often overlooked by assessing long-term change and 

regional trends. The variability observed within the Himalaya dataset highlight the importance of 

individual glacier response and thus regional response commonly discussed within the literature 

will invariably negate glacier- or catchment-scale variability, which could have significant 

implications for local water resources.  

Observations of changes in glacier evolution over periods of negative glacier mass balance indicate 

the relative importance of glaciological processes including ice cliff backwasting and supraglacial 

pond expansion at both locations. Such processes are both products of surface topographic change 

and further promote future glacier morphometric change. The presence and development of such 

features have importance implications for catchment hydrology and alter the energy budget at the 

glacier surface.  

Despite two environmentally different regions of the Alps and Himalaya, and thus climatically 

influenced ablation and monsoonal regimes, debris-covered glacier evolution of the examples 

within this thesis indicate they are following similar trajectories in terms of their evolution and 

dynamics. Evolution of the Manaslu glaciers is perhaps at a slightly more advanced stage with the 

presence of increased area of ice cliffs, supraglacial ponds and proglacial ponding. However, no 

evidence of pond networks or coalescing ponds were observed. Thus, Miage Glacier appears to be 

following the trajectory of Himalayan debris-covered glaciers and supports the use of this Alpine 

glacier to aid our understanding of glaciological processes at a comparatively accessible location for 

application to less-accessible and less constrained regions of the Himalaya. Future assessment of 

debris-covered glaciers in regions such as New Zealand, Patagonia and the Andes will support the 

development of debris-covered glacier evolution more generally.  

This research presented in this thesis illustrates the varied and complex response of debris-covered 

glaciers to global and local climatic change and importance for continued monitoring and 

assessment of surface features for inclusion in modelled attempts of debris-covered glacier 

evolution. This thesis has gathered a wealth of data to aid our understanding of both long- and 

short-term response in two climatically different regions and provides quantification which can be 

used to improve parameterisation and constrain numerical models for application to debris-
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covered glaciers in the Alps and Himalaya and more widely. The complexity of the feedbacks 

associated with debris-covered glaciers mean it is difficult to accurately model climatic response 

and assess their present and future evolution, which require further research. The thresholds 

associated with glacier evolution and timings of such remain variable and uncertain and are 

dependent on a number of local factors. Further constraint is required to understand and quantify 

timings and controls on glacier evolution including thresholds and quantification of tipping points 

including the area of debris cover and surface features at which they have influence overall mass 

balance and thus glacier dynamics. This would aid both understanding and ability to develop more 

realistic numerical models with feedbacks and quantification of important glaciological processes 

associated with debris-covered glaciers.  
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Appendix 
 

 

 

 

Appendix 1: ERA5 Climate data of Himal Chuli Glacier showing mean temperature (top) and 
snowfall (bottom). Data provided by MeteoBlue.  
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