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I 

 
 

Abstract 
This thesis deals with solar radiation verification of four global (NEMSGLOBAL, GFS, ICON 

and MFGLOBAL) weather forecast models and the reanalysis model ERA5. With focusing on 

incoming shortwave radiation, the performances of these models are evaluated and compared 

for the years 2018 until 2020. The goal of this thesis is to find out which models perform the 

best and how the forecast error can be lowered by implementing a multi-model approach. 

Furthermore, seasonal, and spatial patterns are investigated. To achieve that, a quality control 

procedure is applied to measured data based on 81 stations of chosen weather station networks. 

For the verification, measured data are compared to forecast data provided by meteoblue AG 

by calculating several statistical metrics. Among the raw models, ERA5 performed the best. 

Results of the multi-models show a significant reduction of the forecast error by up to 40 % 

when combining two or more models. Within the best performing multi-models, ICON was 

usually weighted the highest (up to 50 %). Several seasonal inconsistencies were observed, 

especially when four models were combined. Spatial analysis shows that ICON and GFS 

perform highly variable throughout the globe, while NEMSGLOBAL and MFGLOBAL 

perform rather consistent. These findings were as well represented by regional variabilities of 

the weightings of the models. Results indicate that the multi-models form a potential approach 

for improving solar irradiation forecast, however, showing seasonal and spatial inconsistencies. 

That shows the potential of further investigation of forecast models and their combination, 

especially on a regional basis.  
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Kurzzusammenfassung 
 
Diese Arbeit befasst sich mit einer Überprüfung der Vorhersage von Solarstrahlung von vier 

globalen Wettervorhersagemodellen (NEMSGLOBAL, GFS, ICON und MFGLOBAL) und 

dem Reanalysemodell ERA5. Mit Fokus auf die einfallende kurzwellige Strahlung wird die 

Leistung dieser Modelle für die Jahre 2018 bis 2020 bewertet und verglichen. Ziel dieser Arbeit 

ist es, herauszufinden, welche Modelle am besten abschneiden und wie der Vorhersagefehler 

durch einen Multi-Modell-Ansatz gesenkt werden kann. Außerdem werden saisonale und 

räumliche Muster untersucht. Dafür wird ein Qualitätskontrollverfahren auf Messdaten von 81 

Stationen ausgewählter Datennetzwerke angewendet. Zur Verifizierung werden die 

gemessenen Daten mit den Vorhersagedaten, bereitgestellt von meteoblue AG, mit Hilfe von 

verschiedenen statistischen Metriken verglichen. Unter den Rohmodellen schnitt ERA5 am 

besten ab. Die Ergebnisse der Multimodelle zeigen eine signifikante Reduktion des 

Vorhersagefehlers um bis zu 40 %, wenn zwei oder mehr Modelle kombiniert werden. 

Innerhalb der leistungsstärksten Multimodelle wurde ICON in der Regel am höchsten 

gewichtet (bis zu 50 %). Es wurden mehrere saisonale Unstimmigkeiten beobachtet, 

insbesondere wenn vier Modelle kombiniert wurden. Die räumliche Analyse zeigt, dass ICON 

und GFS auf der ganzen Welt sehr unterschiedlich abschneiden, während der Vorhersagefehler 

von NEMSGLOBAL und MFGLOBAL global gesehen weniger variiert. Diese Ergebnisse 

wurden auch durch die regionale Variabilität der Gewichtung der Modelle repräsentiert. Die 

Ergebnisse deuten darauf hin, dass die Multimodelle ein potenzieller Ansatz zur Verbesserung 

der Vorhersage der Solarstrahlung sind, während sie allerdings jahreszeitliche und räumliche 

Inkonsistenzen aufzeigen. Dies zeigt das Potenzial weiterer Untersuchungen von 

Vorhersagemodellen und ihrer Kombination, insbesondere auf regionaler Basis. 
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1 Introduction 
 
Forecasting is useful for many situations. Because forecasting means to predict the future as 

accurately as possible, it is an important aid to effectively and efficiently plan and make decisions 

(Antonio et al., 2018). Among the public, weather forecasts are probably the most visible and 

commonly used type of scientific prediction. For a long time, much effort has been made to 

estimate the uncertainty associated with weather on a day-to-day basis (Roulston et al., 2006). 

Next to the importance of predicting severe weather conditions like storms, heavy rainfall, or 

tornados to prevent high destruction, weather forecasting can be a useful tool for agriculture. 

Agriculture is highly dependent on climate. As a result, crop yield variability is affected by year-

to-year climatic variability. The usefulness for climatic knowledge is evident for many sectors 

(Cantelaube & Terres, 2005). The sector most commonly associated with forecasting is the 

energy sector. One of the major challenges for future global energy supply will be the integration 

of renewable energy sources (Heinemann et al., 2006a). The rapidly evolving situation in the 

energy market leads to the need for research on solar power predictions (Perez et al., 2013). 

Therefore, an increasing interest in precise and applicable modeling, forecasting and prediction 

of solar irradiance has evolved (Wang et al., 2012). To efficiently plan and operate solar energy 

systems, forecasts for up to 48 h have to be provided (Heinemann et al., 2006b). Numerical 

weather prediction (NWP) is one of the best tools for hour- and day-ahead forecasts (Kleissl, 

2010). NWP’s infer local cloud information and indirectly transmitted radiation, while the 

dynamic of the atmosphere is modeled through complex physical equations (Perez et al., 2013). 

For decision-makers, it is of crucial importance to examine and compare the potential and 

performance of NWP-models. (Huang & Thatcher, 2017). Within verification of models, 

measured data are compared with model forecast data. Measured data provide empirical 

evidence but are often subject to significant measurement uncertainty (Yang et al., 2018). To 

obtain reliable results of NWP’s performance, measured data need to be analyzed and checked 

for quality (Perez-Astudillo et al., 2019). In literature, various methods for quantifying the 

performance of NWP’s have been established, as well as approaches to improve the forecast 

certainty. For example, ensemble forecasting, in which multiple simulations of the atmosphere 

reflect the uncertainty of the models’ outputs, has become a standard tool for operational 

weather forecasting (Roulston et al., 2006). Further approaches have been mentioned, in which 

the output of different models was averaged and combined, with the consequence of better 

performance than individual models (Perez et al., 2013). Results like this show the potential of 

using NWPs in new approaches to further improve the forecast of solar irradiation.  
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2 Research question  
  
With climate change and the growing need for renewable energies, efficient photovoltaic 

systems and accurate forecast of available solar irradiance are of major importance. Even 

though growing research to improve forecasts can be observed, the availability of ground 

measurements of certain regions is still insufficient. Numerical weather forecasts form a widely 

used alternative by predicting global radiation data. Different models exist on the market, each 

with their own global and regional strengths and weaknesses of predicting processes in the 

atmosphere. To support decision-makers, the estimation of the performance of different 

weather models is mandatory. Measurements used for verification are accompanied by 

uncertainties due to several error sources. Unfortunately, no general recommended quality 

control procedure exists, which makes a comparison of different research difficult. To improve 

forecasts, new approaches such as multi-modeling, in which the output of several individual 

models is combined, have been suggested. Yet, they have been insufficiently investigated. With 

applying well-known quality control procedures to measured solar irradiation data and 

conducting raw model verifications, this thesis gives answers to the following questions: How 

many percent of all measured data do not pass the quality control? Which raw models perform 

on average the best, and how did the model accuracy change within the last years? By giving 

an insight of multi-models and investigating spatial and seasonal differences, answers are given 

to: Does a multi-model mix reduce the solar radiation forecast error? Which multi-model 

performs best and how much could the error be lowered? Is the model performance sensitive to 

different locations or different time periods within the year? 
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3 State of the art  
 

3.1 Numerical weather forecast 
 
The most accurate forecasting of solar radiation has been generated through NWPs in the 

past (Huang & Thatcher, 2017; Mathiesen & Kleissl, 2011). It becomes the best approach 

beyond several hours in advance, while it systematically simulates key atmospheric processes 

and their evolution at large scales (Huang et al., 2018). NWP’s process prevailing weather 

observations assimilated into the model’s framework. They are used to produce predictions for 

a variety of meteorological elements, such as radiation (NCEI, 2021). With highly complicated 

equations, essential physical processes in the atmosphere are calculated on powerful computers. 

Numerical methods are used to calculate the temporal evolution of the model’s variables in a 

three-dimensional spatial grid extending from the ground to a top boundary. The horizontal 

distance between two neighboring grid points (mesh size) is an important parameter. The 

smaller it is, the more detailed the forecast model can predict the conditions of the earth’s 

surface and atmosphere. In addition, the vertical layer thickness can vary from a few meters 

near the ground to several hundred meters. Different models are distinguished by these 

parameters, whereas the accuracy highly varies, especially for different regions (DWD, 2021c). 

The performance of NWP depends on individual models and locations (Huang et al., 2018). 

Forecast errors often arise from an incorrect representation of convective clouds, because 

NWP-models do not precisely predict the stochastic nature of clouds at a small spatial and 

temporal scale (Huang & Thatcher, 2017). Therefrom, NWP-models usually over- or 

underpredict several climatologic parameters. Moreover, model uncertainties result from 

approximation-errors of physical parameterizations (Boisserie et al., 2014), as well as of 

determining the initial conditions the model is based on (Troccoli, 2010). Many popular NWP’s 

have been significantly improved in conventional operational performance due to achievements 

in research on the one hand, and advancements in computation capability on the other 

hand (Huang et al., 2018). In the need for improving forecasting approaches, literature gives 

first insights into the advantages of combining models. In the study of Perez et al (2013), after 

evaluating raw model performances, the best performing raw models were blended. Results 

showed a slightly better performance compared to the results of the individual models. This 

approach was investigated by Huang et al. (2018) for several sites in Australia, statistically 

confirming, that forecast is improved by blending multiple models. While the randomness in 

the forecast irradiances can be statistically averaged, different models can partly compensate for 

each other (Gregory et al., 2012; Perez et al., 2013). These results give first insights into the 
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potential of multi-models to improve solar irradiance forecasting, particularly on a regional 

basis. To shed light on the variety of different NWP-models, several well-known models will be 

described shortly in the following.  

 
3.1.1 Global Forecast System (GFS) 

 
GFS is a global forecasting model established by the National Oceanic and Atmospheric 

Administration (NOAA) through National Centers for Environmental Prediction (NCEP). Its 

forecast is published at 00, 06, 12 and 18 of Coordinated Universal Time (UTC). GFS considers 

certain parameters like absorption effects from water vapor, ozone, oxygen, and methane as 

well as cloud optical depth, albedo and more (Mathiesen & Kleissl, 2011). Its horizontal 

resolution is approximately 13 km, and the vertical is divided by 127 layers (NCEP, 2021).  

 

3.1.2 NOAA Environment Monitoring System Global (NEMS Global) 
 

The NEMSGLOBAL is the global component of the multi-scale model family NEMS that 

significantly improves cloud development and precipitation forecast. It was published by 

meteoblue AG and is the successor of Nonhydrostatic Mesoscale Models (NMM). Its horizontal 

resolution is 30 km (meteoblue AG, 2021b). 

 

3.1.3 Icosahedral Nonhydrostatic Model (ICON) 
 

ICON is a numerical weather prediction model designed by the German Weather Service 

(DWD) in cooperation with the Max Planck Institute for Meteorology. It was the first model 

using an icosahedral grid. The global ICON grid has 2,949,120 triangles, corresponding to an 

average area of 173 km² and thus to an effective mesh size of about 13 km (DWD, 2021a). It 

has 90 vertical layers. For Europe, ICON owns one refined subregion (“nest”), which leads to a 

higher regional resolution (Reinert et al., 2021). 

 

3.1.4 Meteofrance Global (MFGLOBAL) 
 

MFGLOBAL, also called ARPEGE40, is a weather model by the French national weather 

service. The global resolution is 40 km. It has 105 vertical levels. Daily forecasts are made at 00, 

06, 12 and 18 UTC (CNRM, 2021). 
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3.1.5 ECMWF Reanalysis 5th Generation (ERA5) 
 

The ERA5 model is, in contrast to the other models, a global reanalysis model. It was produced 

by the European Centre for Medium-Range Weather Forecasts (ECMWF) 

(Hersbach et al., 2020). ECMWF periodically uses this forecast model and data assimilation 

systems to “reanalyze” archived observations, through which global datasets are 

created (ECMWF, 2021a). It provides a great number of outputs that are available in an hourly 

resolution. (Hersbach et al., 2020) It consists of 137 levels in the vertical and has a spatial 

resolution of 31 km (ECMWF, 2021b).  

 

3.2 Solar irradiance and measurements 
 

For weather analyses, forecasts, and weather warnings as well as research, meteorological 

observations, and environmental measurements are necessary. The need to provide 

high-quality meteorological data has led to a great evolution of automatic data acquisition 

systems, in which data are saved in large databases. Therefore, over the last 20 years, the 

number of automated weather station networks has greatly increased (Estévez et al., 2011). The 

Basic Surface Radiation Network (BSRN) is the central archive under the World Radiation 

Monitoring Center (WRMC) (Yang et al., 2018). It has been established to provide high-quality 

radiation measurements, aiming at detecting important changes in the surface balance. 

Therefore, is has been widely used in scientific applications (Roesch et al., 2011). Another well-

known central depository for solar radiation data is the World Radiation Data Center (WRDC) 

located in Russia. Member countries of the World Meteorological Organization (WMO) 

contribute measured data of over 1000 globally distributed measurement sites (Badescu, 2008). 

Measuring solar radiation by ground-based weather stations is one of the most accurate 

methods (Alani et al., 2021). Direct radiation (DIR), also called beam irradiance, is the radiation 

coming directly from the sun. It is usually measured with a pyrheliometer. Diffuse radiation 

(DIF) is the sunlight scattered in the atmosphere, measured with a shaded pyranometer, 

therefore, being shielded from the DIR. Together, these fractions sum up to the global 

horizontal irradiance (GHI). The latter can also be directly measured with an unshaded 

pyranometer.  

Measured data are always accompanied by significant measurement 

uncertainty (Yang et al., 2018). Especially measurements of solar radiation are prone to 

errors (Journée & Bertrand, 2011). These errors arise not only through inaccuracies and 

imprecision of an instrument, but also through insufficient data 

management (Behar et al., 2015). Next to power outages or communication problems causing 
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storage problems or data gaps (Alani et al., 2021), the most common error sources are sensors 

and their construction. These include, for example, the cosine response (Muneer et al., 2007). 

Ideally, a pyranometer has a directional response to the cosine law. Lambert's cosine law states 

that the luminous flux produced by a focused beam on a flat surface is proportional to the cosine 

of the angle of incidence of the beam on the surface (Badescu, 2008). However, this response is 

influenced by several factors such as the detector or the construction of the domes. Due to the 

high sensitivities of the sensor, the error increases, the lower the sun angle (Alani et al., 2021). 

That is why erroneous measurements can be observed especially during sunrise and sunset (at 

altitude angles of sun below 61°) (Muneer et al., 2007). This error occurs frequently, even for 

very carefully calibrated pyranometers (C. Gueymard & Gueymard, 1993), and is therefore 

widely recognized in literature (Muneer et al., 2007). In addition, thermal offsets within the 

measuring instruments can occur due to radiative cooling, which can become evident by 

negative values at night (Roesch et al., 2011). 

 

3.3 Quality control 
 

The difficulty of validation studies is the comparison of two uncertain data series (modeled vs. 

measured). Forecast errors do not only come from model errors but are also caused by 

measurement errors used to verify the output of models. Since several sources of uncertainty 

exist, quality control (QC), as a major prerequisite for using meteorological information, can be 

of great benefit (Alani et al., 2021). Validation of meteorological data ensures properly 

generated information and identification of lacking or missing values (Estévez et al., 2011). That 

ensures, that the data is of satisfying reliability for the purpose of the upcoming validation. Since 

QC is a substantial research topic in the case of radiometric organizations, several guidelines 

have been published. The BSRN, for example, proposed an automated QC, whose 

methodologies have been widely used in literature, which this thesis will explain more in detail 

later on (Alani et al., 2021).  

Common procedures for QC include visual inspection of meteorological observation through 

mapping time ranges allowing the search for missing or abnormal values or issues in time 

reference (Alani et al., 2021). Further investigation deals with extreme values. The so-called 

“range test” verifies, whether measured data lays within an upper or a lower threshold to be 

considered valid (Estévez et al., 2011). Within solar radiation research, certain boundaries for 

GHI are set. For example, GHI cannot exceed the solar constant, and, climatologically seen, 

cannot go below the value of zero (Journée & Bertrand, 2011). The solar constant (S0) is defined 

by the radiation that reaches the top of the atmosphere at mean earth-sun distance. In literature, 
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it varies from 1361 W/m2 to 1367 W/m2 (Badescu, 2008). Physical possible limits (PPL) and 

extremely rare limits (ERL) , established through recommendations by the BSRN, depend on 

the solar constant as well as the zenith angle (ZA) of the sun and determine its boundaries. PPL 

and ERL are defined as followed (Long & Dutton, 2010): 

 

The minimum limits are tolerant of the measurement errors, that can occur during night 

(Section 3.2). Values exceeding these limits are considered impossible and are therefore 

removed (Younes, 2006). When filtering measurements according to their quality, many tests 

rely on calculations of the solar position. Since measuring these parameters is unpractical, they 

are determined through calculations. In literature, no standard methodology for the latter is 

recommended (Perez-Astudillo et al., 2019). However, for example, the NOAA established 

algorithms calculating different solar parameters (NOAA, 2021). Statistic programs, such as 

RStudio, make use of this information and implement them in different packages (e.g. 

“maptools”, “insol”) that are easily available for its users (Bivand, 2021; Corripo, 2021). 

Furthermore, the behaviour of solar radiation depends on stochastic parameters like the 

frequency and height of the clouds, atmospheric aerosols, groundwater vapour, and 

atmospheric turbidity (Badescu, 2008). To isolate these stochastic components, and to focus on 

main error sources, the global clearness index (Kt) can be calculated. Kt is defined as the ratio of 

GHI and the extraterrestrial radiation (Gext).   

Gext itself can be calculated through a function of S0, the sun’s elevation angle (EV) and the 

Earth’s orbit eccentricity correction factor (e). The latter is calculated with a simplified equation 

of Spencer’s eqation using the Julian day (𝑗) as an input: 

Accordingly, Gext is calculated through the following equation (Paulescu et al., 2021): 

𝑃𝑃𝐿:	 − 4	 ≤ 𝐺𝐻𝐼	 ≤ 𝑆! ∗ 1.5 ∗ 𝑐𝑜𝑠(𝑍𝐴)".$ + 100 (1) 

 

				𝐸𝑅𝐿:		 − 2 ≤ 𝐺𝐻𝐼 ≤ 𝑆! ∗ 1.2 ∗ 𝑐𝑜𝑠(𝑍𝐴)".$ + 50 

 

(2) 

 

𝐾%	 =	
𝐺𝐻𝐼
𝐺'(%

 
(3) 

 

𝜀	 = 	1 + 0.0342	 ∗ 	𝑐𝑜𝑠 A
2𝜋(𝑗 − 1)
365 D 

(4) 

𝐺'(% 	= 	 𝑆! ∗ 𝜀 ∗ 𝑠𝑖𝑛(𝐸𝑉) (5) 
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The Kt-index ranges from zero to one. Any data exceeding these boundaries are unrealistic. 

Thereby, the Kt-index acts as another indicator for erroneous measured data (Younes, 2006). 

Finally, the knowledge of the clear sky irradiance reaching the ground is a key parameter in the 

field of solar radiation modeling and evaluation (Journée & Bertrand, 2011). To investigate the 

consistency of measured data regarding clear sky conditions, clear sky irradiations (Gclear) can be 

assessed through models. In literature, a variety of clear sky models are available. Much effort 

has been made to compare different models investigating advantages and disadvantages (C. A. 

Gueymard, 2012; Ineichen, 2016; Reno et al., 2012). In general, the options of models vary 

from very simple to more complicated formulations. All clear sky models require geometric 

inputs describing the ZA. Whereas the simplest model requires only the ZA, other simple models 

include further basic parameters describing the state of the atmosphere such as air pressure, 

temperature as well as further parameters. More complex models consider various measurable 

parameters like ozone, aerosols, and perceptible water. Even though being considered the most 

accurate models, they are usually very time-consuming in processing and also heavily dependent 

on local measurements. Very simple clear sky models tend to significantly underpredict the 

irradiance, especially for high altitude sights. In contrast, simple models accounting for the 

altitude are more comparable to the accuracy of more complex models. For instance, the model 

established by Ineichen performed almost as well as the more complicated model 

“REST2” (Reno et al., 2012). A more recent study by Yang (2020) supports previous 

assumptions as well. By comparing three different clear sky models, including the 

Ineichen-Perez model, Yang found out, that there is “[…] no evidence on which to base the 

belief that high-performance clear-sky models are superior to the simpler ones in forecasting 

applications”. Under the circumstances, that complex clear sky models entail, the author 

suggests the Ineichen-Perez model being the most suitable (Yang, 2020). Ineichen and Perez 

added corrections to the original formulation by Kasten to the following equation (Ineichen & 

Perez, 2002): 

where: 

𝐺)*'+, =	𝑎" ∗ 	𝐺'(%(.+!∗	01∗(2"#3	2"!.(4$.	"))) (6) 

𝑎"	 = 	5.09 ∗ 10.6 ∗ ℎ ∗ 0.868 (7) 

𝑎$ = 	3.92 ∗ 10.6 ∗ ℎ ∗ 0.0387 (8) 

𝑓7" = 𝑒𝑥𝑝	 Q
−ℎ
8000R 

(9) 
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The corrected version mainly uses the Linke Turbidity (TL), the Air Mass (AM) and the elevation 

above sea level (h) of the location as input (Ineichen & Perez, 2002). TL quantifies the 

atmospheric visibilty under clear sky (Journée & Bertrand, 2011). It is a convenient 

approximation to model the atmospheric absorption and scattering of radiation (Reno et al., 

2012) and can express the optical thickness of a cloudless atmosphere (Ineichen & Perez, 2002). 

The more attenuation of radiation by the atmosphere, the larger the TL (Reno et al., 2012). To 

create a worldwide database for TL, Remund et al. (2008) calculated and produced maps for 

monthly or yearly values using a combination of ground measurements and satellite 

data (Remund et al., 2008). AM is a parameter that measures the path length that solar rays 

follow in the atmosphere before reaching the ground. The longer the path, the stronger the 

interaction between solar radiation and the atmospheric constituents (Badescu, 2008). The path 

is dependent on the ZA. The higher the ZA, the higher AM. At ZA = 90°, the AM is one. Usually, 

the air mass is often approximated for a constant density atmosphere and ignores the Earth’s 

curvature using the geometry of a parallel plate. That is why at zenith angles larger than 80° 

the accuracy degrades rapidly, where AM goes to infinity. A simple approximation of the AM, 

developed by Kasten and Young, is defined as followed (Reno et al., 2012): 

 

When working with modeled Gclear, certain conditions need to be considered, since previously 

described calculations become imprecise when it comes to high ZA’s. Furthermore, with very 

high zenith angles, GHI can, in fact, be higher than the Gext due to the diffusive effects of 

clouds (Journée & Bertrand, 2011). Therefore, reasonable limits of radiation data are considered 

to range between 75° < ZA < 85° (Alani et al., 2021; Engerer & Mills, 2015; C. A. Gueymard 

& Ruiz-Arias, 2016; Muneer et al., 2007; Reno et al., 2012; Yang, 2020; Younes et al., 2005). 

Since GHI may exceed Gclear occasionally due to cloud enhancement (Yang et al., 2018), the 

upper limit for GHI is set to 1.1 times the Gclear (Journée & Bertrand, 2011). 

 

3.4 Model verification 
 

Through verification, the accuracy of the forecast can be investigated (DWD, 2021b). 

Comparing the performance of different models gives valuable information not only to 

𝑓7$ = 𝑒𝑥𝑝	 Q
−ℎ
1250R 

  (10) 

𝐴𝑀 =
1

𝑐𝑜𝑠(𝑍𝐴) + 0.50572 ∗ (96.07995 − 𝑍𝐴).".896: 
(11) 
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researchers for further model development, but also to forecast users as an assisting tool for 

choosing between different forecasting products (Perez et al., 2013). To evaluate the 

performance of models, several statistical indices accompanied by their strengths and 

weaknesses are available (Behar et al., 2015). The following statistical mediums are rated as 

suitable in literature (Huang & Thatcher, 2017; Mathiesen & Kleissl, 2011; Mayer & Butler, 

1993; Troccoli & Morcrette, 2014; Wang et al., 2012): 

When working with different datasets consisting of a high amount of data points, calculating 

their arithmetic mean is a common approach to make generalized statements of different 

dataset. With x representing each data point, and n being the amount of data points, the 

arithmetic mean is calculated as followed (Dormann, 2017): 

Based on the simple arithmetic mean, the mean absolute error (MAE) describes particularly the 

amount of deviation of two different datasets, for instance the prediction (y) from the observation 

(x) throughout all datapoints (n), but no direction of deviation. That means, positive and negative 

deviations equal out (Mayer & Butler, 1993).  

To assess if a model over- or underpredicts the forecast, mean bias error (MBE) is calculated. 

Whenever the output is negative, the model tends to underpredict and vice-versa for positive 

output (Younes et al., 2005). To compare the interrelationships of different datasets, Pearson’s 

correlation coefficient is used since it is a normalized measurement of the covariance measuring 

the coherence of different datasets. It is defined as followed (Dormann, 2017.): 

 

Its value ranges from minus one to one. Positive values imply that both datasets vary in the same 

direction, negative values mean the smaller one dataset, the larger the other. Values around the 

value of zero indicate no correlation.  
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4 Hypotheses and objectives 
 

The goal of this thesis is to assess the model accuracy of global weather forecast models and to 

optimize the forecast accuracy by a multi-model approach in order to achieve the lowest 

possible forecast error. Analyses will concentrate on the following initial assumptions: 

It is assumed, that the accuracy of NWP-models is subject to constant investigation, and 

therefore, has improved within the last years [H1]. Also, combining the output of different 

individual models can lower the forecast error, since inaccuracies can to some degree outweigh 

each other [H2]. Within multi-models, it is expected, that the more models are included in the 

mix, the lower the forecast error will be [H3]. Furthermore, it is assumed that raw models 

perform unequally well for certain spatial or climatic conditions [H4]. Where seasonal and 

regional differences occur, effects on local multimodel performances are possible [H5]. 
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5 Materials and methods  
 

5.1 Data basis 
 

The basis of this thesis was measured and modeled global radiation. Data from BSRN were 

downloaded for the years 2018 and 2019 and unfolded as well as converted to text files, with 

the help of the BSRN-Toolbox (WRMC-BSRN, 2021). Data from WRDC were copied and 

saved in Excel-files for the years 2018 and 2020 (WRDC, 2021). The data from the Global 

Atmosphere Watch (GAW) stations were used being available in an hourly resolution. Since 

data at WRDC are saved as tables per month, yearly time series had to be produced afterwards. 

In addition to radiation measurements, both networks provide the user with information about 

the metadata of each station. The coordinates (latitude and longitude) of each station, as well as 

the elevation, were separately saved for further analysis. The stations were plotted on a world 

map to check the plausibility of the station’s location with the aid of the statistical program 

RStudio. Table 1 gives a summary of the data sources. Figure 1 shows the spatial resolution of 

the stations per dataset.  

 

Table 1: Summary of properties of datasets used in this thesis. 

 BSRN WRDC (GAW) 

Temporal resolution Minute Hour 

Aggregation Instantaneous Backwards 

Unit W/m2 J/cm2 

# of stations 43 43 

Timezone UTC Local 

Years 2018, 2019 2018, 2020 

 

Since data were available in different temporal resolutions, the processing of these data for an 

overall consistency was mandatory. With the help of RStudio, data were loaded and further 

processed to consistent time series. Minute instantaneous data were averaged to hourly 

backward data. Each timestamp began on January 1st, 1:00 and ended on December 31st, 23:00. 

For every station, singular time series were produced. Furthermore, data were converted, if 

necessary, to the unit W/m2. In addition, WRDC data had to be transformed from local to 

UTC time. Data of stations located in Australia had to be interpolated to full hours after the 

time zone transformation since the time-offset to UTC is nine hours and 30 minutes. 
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Daily forecast datasets (12-35 hours ahead) for the years 2018 until 2020 have been provided 

by meteoblue AG (meteoblue AG, 2021a). Following models were taken into consideration for 

solar radiation validation: 

- ERA5 (2018-2020) 

- GFS (2018-2020) 

- NEMSGLOBAL (2018-2020) 

- MFGLOBAL (2019-2020) 

- ICON (2018-2020) 

Note, that MFGLOBAL was not available for 2018. Backwards forecast data were downloaded 

for every station in an hourly time resolution. 

 

5.2 Preparing data 
 

Before the validation of the raw models, quality control filters were applied to the measured 

data. To prepare the quality control process, several parameters were defined, and specific solar 

data were calculated. The solar position was derived from the timestamp, latitude, longitude, 

and elevation of each station with the help of the RPackage “insol” (Corripo, 2021). ZA and EV 

were calculated for every minute of the required year (2018 until 2020). Afterwards, Gext was 

calculated with Equation (4) and (5). Furthermore, after deriving AM (Eq. (11)), instantaneous 

Gclear was calculated (Eq. (6 to 10)). TL was available as a GEOTIFF-map in a yearly resolution 

and downloaded online via Solar radiation Data (SoDa) (SoDa, 2010). Subsequently, Gext, Gclear, 

ZA and EV were averaged to hourly data by calculating the arithmetic means. 
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Figure 1: Spatial resolution of stations from BSRN and WRDC. A total of 16 stations are overlapping. 
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5.3 Quality control procedure 
 

Before removing or correcting erroneous data, visual inspection of the measured data was 

carried out. Within that, data gaps were detected, and examination of time reference issues was 

possible. Sunset and sunrise were calculated with the help of a function included in the 

RPackage “maptools” (Bivand, 2021) using the latitude and the longitude of the station as an 

input. For every station that showed errors, a “peak correction” was conducted. To do so, daily 

radiation peaks of the measured data, usually occurring around noon (local time), were visually 

compared to those of calculated Gext. Within that, the measured data was alternated by pre- or 

postponing it by zero to two timesteps. For each option, Pearson’s correlation coefficient was 

calculated (Eq. 14). The option that brought out the highest coefficient was chosen to correct 

the timestamp of the measured data, assuming that the peaks of both datasets lie on top of each 

other.   

The next procedures aimed to detect extreme outliers that exceed certain physically possible 

and extremely rare limits. Before analyzing these, one important condition was met. As 

previously explained (Section 3.2), the cosine error of the measurement’s instruments is a 

reoccurring error. To bypass these problems, all values of the measured data during sunrise and 

sunset were removed (Filter I). That included all values (< 0 W/m2) where ZA > 85°. This 

ensured on the one hand, that problematic data did not lead to consequential errors later, and 

on the other hand, that nighttime values were still considered for further validation. Next, PPL 

(Filter II) and ERL (Filter III) for every hour of each day of the year were calculated based on 

the formulations established by the BSRN (Eq. (1 and 2)). Data were analyzed and removed as 

soon as it exceeded its limit. Figure 2.b shows, how visual inspection of the latter can be realized. 

Furthermore, due to climatological limits, all data points lower than zero were deleted 

(Filter IV). Thereafter, more advanced quality control followed. Further limits for measured 

data were set by evaluating, whether measurements exceeded clear sky radiation. In the next 

step, Gclear and Gext were used to calculate the K-indices. GHI and Gclear were both divided by the 

Gext. 

 

Kt was plotted against the EV angle to evaluate its distribution. Kt,clear was added (Figure 2.c). The 

upper limit was set to the following: 

𝐾% =
𝐺𝐻𝐼
𝐺'(%

 (16) 

𝐾%,)*'+, =
𝐺)*'+,
𝐺'(%

 
(17) 
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All Kt points exceeding the climatological possible limit were considered erroneous and therefore 

deleted (Filter V). Checking the timestamp visually once more, the measured data should then 

lay within the sunrise and the sunset and should be free of outliers (Figure 2.a). During the QC 

procedure, the loss of the measured data after each filter was documented and analyzed. 

 

  

𝐾% 	< 1.1𝐾%,)*'+, (18) 
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Figure 2: Visual inspection of QC-procedures, illustrated by station “CNR” (BSRN 2018). Plot a) was 
used to examine time consistency between measured data and solar position. All filters were applied, and 
peak-correction conducted. Plot b) shows, if measured solar irradiance exceeds PPL’s or ERL’s after 
applying Filters II and III. Plot c) represents the Kt-index plotted against the EV, after applying Filter V. 
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5.4 Model Verification 
 

To evaluate models, measured data of each dataset were compared to forecast data. Statistical 

analysis was conducted to evaluate and compare the performance of each (raw or multi-) model 

by calculating the MAE and the MBE. While MBE and MAE calculate average values for each 

individual station, most of the results of this thesis are based on the further calculation of average 

values over all available stations, describing the central tendency of the data.  

 

5.4.1 Multi-model verification 
 

For the multi-model validation, four models were considered in total: GFS, ICON, 

MFGLOBAL, NEMSGLOBAL. Multi-models were formed by adding up a chosen number of 

models. Each model was assigned a specific weight, which was implemented as a factor.  

The models were weighted in 10 % steps. That means factors a, b, c, and d could range from 

zero to one in steps of 0,1. All factors had to add up to one (100 %). In total, there were 258 

combinations available. For each combination, the MAE and MBE were calculated. 

Further analysis was conducted through different approaches. First, raw model validation was 

conducted, where MAE and MBE of each model were compared (Section 6.2). Then, multi-

model analyses followed. In Section 6.3, the differences between multi-models consisting of 

either two (M2), three (M3) or four (M4) raw models were examined. Scatterplots, in which the 

MAE and the MBE for each combination are plotted against each other, were used to examine 

different patterns between the combinations. After that, the combination achieving the lowest 

MAE per station was documented and used for further analysis. To point out first tendencies, 

the influence of the number of models within a multi-model was investigated. Within that, the 

frequency of how often either raw models, 2M-, 3M-, or 4-M-combinations achieved the lowest 

MAE was illustrated. Furthermore, the MAE of all raw models, as well as all 2M-, 3M-, 4M-

combinations were separately averaged for each station. Afterwards, the mean for all stations 

was calculated, giving a summary of how these different combinations perform on average. In 

Section 6.4, all raw models were compared to the multi-models by calculating the difference of 

their MAE’s. To follow up on previous analyses, it was examined, how much weight was assigned 

to the models to achieve the lowest MAE. These results were illustrated through histograms. 

Getting closer to a first conclusion on the best performing combination, mean percentages for 

each model were averaged over all combinations that achieved the lowest MAE. The latter was 

performed on M2, M3 and M4 separately (Section 6.5). 

𝑀𝑀 = 𝑎 ∗ 𝑀𝑜𝑑𝑒𝑙" + 𝑏 ∗ 𝑀𝑜𝑑𝑒𝑙$ + 𝑐 ∗ 𝑀𝑜𝑑𝑒𝑙9 + 𝑑 ∗	𝑀𝑜𝑑𝑒𝑙: (19) 
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To find out if the multi-model approach is robust against seasonal variabilities, all possible 

combinations were performed for each quarter of the year. Therefore, measured and modeled 

data were split every third month in order to represent each season. For each station and 

quarter, the 20 best combinations achieving the lowest MAE’s were filtered out. All quarters 

were compared by determining the number of overlapping combinations, under the 

assumption, that more overlaps suggest higher robustness of the multi-model approach. 

Thereafter, the means of all combinations for every quarter were calculated and compared to 

each other (Section 6.6).  

In Section 6.7, data were simply plotted on world maps to investigate the abundance of spatial 

patterns. First, for each dataset and year, the number of overlapping combinations in steps of 

two was plotted on a world map and tagged with different colors. The second part of the spatial 

analysis consisted of plotting the percentage of each model, through which analysis of spatial 

differences on where models are weighted higher and lower were possible. Here, the 

combinations of the best MAE per station were used. Last, the MAE per station of each model 

were plotted on world maps to examine spatial similarities of raw model performances and 

individual model weightings. 
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6 Results  
 
6.1 Quality controlled data  

 
Table 2 shows the means of every single filter, averaged over all stations within one dataset and 

one year. The first column shows the overall percentage of data gaps that already existed before 

the quality control. Data gaps, originated by station errors or unreliable data assimilation vary 

strongly throughout the stations. On average, 3-25 % of yearly data were missing. In general, 

the data from WRDC showed fewer gaps than the data from BSRN. Most gaps occurred in the 

data of the BSRN in 2019 when on average up to 1/4th of each station was missing. In contrast, 

the data of WRDC 2018, showed few missing data.  
Table 2: Quantity [%] of data points affected by each filter. All filters deleted data except for Filter IV. 
Here, data were instead corrected to zero, therefore not included in “Removed”. 

 Data 
gaps 

ZA > 
85° 

Min 
PPL 

Max 
PPL 

Min 
ERL 

Max 
ERL 

Nega-
tives 

Clear 
sky 

Re-
moved 

# Filter  I II II III III IV V I-III, V 

BSRN  
18 10.30 10.45 1.60 0.00 4.26 0.00 12.84 5.31 21.62 

BSRN 
 19 24.97 8.98 1.92 0.00 4.30 0.01 12.17 4.89 20.09 

WRDC 
18 2.27 6.89 0.00 0.00 0.00 0.13 0.00 5.34 12.45 

WRDC 
20 10.22 6.44 0.00 0.00 0.00 0.07 0.00 4.60 11.10 

 
 

Looking at the other QC-filters, most of the data were lost through Filter I, deleting the sunset 

and sunrise data (6-11 %). Only a few values (up to 2 % per station) exceeded the PPL’s and 

ERL’s. Most of them included the negative night values that arose from the nighttime offset of 

the measuring instruments. On average, no measurement contained outliers exceeding the 

maximum PPL, only very rarely (WRDC 2018, 2020) measurements exceeded the maximum 

ERL. The remaining negative values (up to 13 % on average) were set to zero. Only data from 

BSRN showed negative nighttime offsets. For the clear sky filter, approximately 5 % of the data 

exceeded the clear-sky-limitation and were removed. All in all, more data from the BSRN had 

to be removed, than from the WRDC dataset.   
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6.2 Raw model verification 
 

Figure 3 and Table 3 summarize the results of the raw model validation. In Figure 3, the 

performance of each model is represented by showing the MAE per station. In this figure, a 

ranking of the model-performances is visible. Corresponding mean values for each dataset and 

year are enclosed in the appendix (Table 12). Both datasets show the following results. The 

lowest MAE were seen in the ERA5 reanalysis model, with a maximum MAE-average of 

44.01 W/m2. The second-best model is ICON (max. average 49.57 W/m2). GFS 

(max. average 51.92 W/m2) and NEMSGLOBAL (max. average 61.08 W/m2) follow. The 

highest MAE were calculated for the model MFGLOBAL, with an average MAE up to 

67.39 W/m2, especially shown for the stations of BSRN. On average, the MAE throughout all 

b) 

Figure 3: Performance of each model illustrated by the MAE per station for both datasets separately. 
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models varied from 27.28 W/m2 to 67.39 W/m2. Table 3 shows the mean values for the MAE 

and the MBE for every model averaged over all same stations within one dataset. That allowed  

comparison between the years of one dataset. After analyzing the MBE, it was shown that 

MFGLOBAL and NEMSGLOBAL underestimated the measured data (negative values), while 

the other models overestimated the measured data. In general, the best MBE was met with 

ICON for WRDC 2020 (1.03 W/m2). When comparing the errors of different years, with one 

exception (ICON), the MAE’s declined from 2018 to 2019 and 2018 to 2020. The MAE of 

ERA5 decreased by up to 2.11 W/m2, of GFS by up to 2.26 W/m2, and of NEMSGLOBAL 

by up to 2.1 W/m2. For the average MBE, improvements varied. The average MBE of ICON 

and GFS (for both datasets) improved, whereas, for example, the average MBE of ERA5 for the 

measurements of BSRN deteriorated. 

 

6.3 Multi-model verification and analyses 
 

6.3.1 Comparison of MAE and MBE 
 

The performance of the raw models, as well as the multi-models, could be illustrated with 

scatterplots for each station. Figure 4 shows scatterplots of selected stations. The different 

colored dots represent the number of models used in each multi-model. The stations 1-4 showed 

noticeable results, in which the combination with the lowest MAE achieved a low MBE as well. 

Furthermore, it can be seen, that all multi-model combinations achieved a better MBE within 

the highest and the lowest MBE calculated by the raw models. Counterexamples to the just 

mentioned stations showed the stations e and f. In very rare cases there was a possibility, in 

which no multi-model combination could lower the MAE, meaning an individual model 

performed better (station e). Station f showed that low MAE’s do not always mean low MBE’s. 

Table 3: Mean absolute error [W/m2] (left) and mean bias error [W/m2] (right) averaged over the 
stations of each dataset, that were available for 2018 and 2019. In 2018, MFGLOBAL was not available 
(n.a). 

 
 

 BSRN WRDC BSRN WRDC 

 2018 2019 2018 2020 2018 2019 2018 2020 

 MAE MBE 

ERA5 43.27 42.61 39.56 37.45 6.23 8.02 8.70 6.33 

ICON 48.05 48.35 42.54 42.99 13.76 8.31 14.48 1.03 

GFS 51.13 49.82 46.80 44.54 13.88 12.35 19.66 13.24 

NEMSGL. 60.62 59.61 52.76 50.61 -9.0 -8.62 -2.60 -4.64 

MFGL. n.a 67.14 n.a 51.56 n.a -42.86 n.a -25.59 
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In general, these scatterplots also show the distribution of different combinations. While the 

data points describing for the 2M-combinations are variably distributed and therefore more 

spread out, the data points representing the 4M-combinations, are far more bundled and less 

scattered.  

 

6.3.2 Influence of the number of models within a multi-model mix 
 

In the following, this thesis examined, how often different multi-model combinations achieve 

the lowest MAE. In Figure 5, the frequency of the best multi-models regarding their number of 

raw models is illustrated. The blue bar represents the multi-model combination that obtained 

the lowest MAE the most recurrently within a year throughout all stations of one dataset. For 

2018, there were no model mixes of four models available. For up to 40 stations, the 

3M-combination achieved the lowest MAE within WRDC and BSRN. For one station of the 
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Figure 4: Scatterplots of MAE and MBE of all multi-model combinations. On the left (a and b) and in 
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dataset WRDC, the raw model performed better than any other combination. For 2019 and 

2020, 4M-combinations were available. The lowest MAE’s for these years were achieved by 

4M-combinations. In 2019, almost the same number of 3M-combinations as 4M-combinations 

achieved the best results. Even though two models combined or even the raw models themselves 

can produce good results for some stations, the lowest MAE’s however tend to be achieved when 

using three or four models. Examining, how much more the MAE is lowered by adding another 

model to the mix gave a more detailed insight into how the different variations perform. 

Results are summarized in the Table 4. The biggest and most significant decrease of MAE was 

achieved, when two models were combined and compared with the raw models themselves. 

Thereby, the MAE was lowered by up to 4.5 W/m2. When a third model was added to the 

model mix, MAE decreased again but was less significant. The error was maximally reduced by 

2.4 W/m2. Using four models, MAE was lowered again, however, by even less (approximately 

1.7 W/m2).  

 

Figure 5: Barplots showing how often raw models, M2, M3 or M4-combinations achieved the lowest 
MAE per dataset and year.  
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6.4 Comparison of multi-models with raw models 
 

To examine the impact of multi-model mixes, the statistical error was compared to those of the 

raw models. It was shown in Section 6.2, that ERA5 had on average the best MAE’s. In the next 

step, it was investigated, if multi-models lower the MAE even below the best raw model (that 

was, as a reminder, not included in the multi-models), and it was shown how much the error in 

comparison to all raw models has been lowered.  

Table 5 shows the average mean (best) MAE values of each dataset’s stations and all years of 

first, the multi-model, and second, every raw model. In addition, the difference of the multi-

model to each individual raw model is shown. A negative prefix means a lower MAE, a positive 

therefore a larger MAE. First, the multi-model was compared to ERA5. Except for BSRN 2018, 

there was always a decrease of the MAE identifiable through the multi-model identifiable. The  

  

Table 4: MAE [W/m2] averaged over all stations per dataset and year for raw models, 2M-, 3M, 

4M-combinations. 
 Raw Models 2 Models 3 Models 4 Models 

BSRN 2018 53.27 48.93 46.72 n.a 

BSRN 2019 56.44 51.79 49.37 47.64 

WRDC 2018 49.46 45.64 43.62 n.a 

WRDC 2020 47.66 43.97 42.08 40.79 

Table 5: Comparison of the MAE [W/m2] of multi-model (MM) results (blue) with all raw models. One 
exemption is marked in bold.  

 BSRN 2018 BSRN 2019 WRDC 2018 WRDC 2020 

MM 43.85 41.17 40.81 37.26 

ERA5 42.69 42.97 41.48 37.28 

DIFF +1.16 -1.8 -0.67 -0.02 

GFS 50.80 50.74 48.82 44.48 

DIFF -6.95 -9.57 -8.01 -7.22 

ICON 49.34 48.70 45.97 42.84 

DIFF -5.49 -7.53 -5.17 -5.59 

MFGLOBAL n.a 66.85 n.a 52.25 

DIFF n.a -25.68 n.a -14.99 

NEMSGLOBAL 59.67 59.46 53.60 51.07 

DIFF -15.82 -18.30 -12.79 -13.81 
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MAE has been reduced by up to 1.8 W/m2. Yet, the MAE’s were still very similar to those of 

the ERA5 model. Comparing the MAE’s of the multi-models to all other raw models, there was 

always a decrease of the MAE visible. These results were much more significant than the 

comparison of the multi-model to ERA5. Looking at NEMSGLOBAL for example, the MAE 

could have been lowered by up to 18.3 W/m2. The MAE has decreased by almost 30 %. The 

results for MFGLOBAL showed even higher decreases. Where MFGLOBAL had an error of 

66.85 W/m2 for BSRN (2019), the multi-model lowered the error to 41.17 W/m2. That was a 

decrease of 40 % of the raw model error. All in all, the multi-model lowered the MAE compared 

to the raw models (GFS, ICON, MFGLOBAL, NEMSGLOBAL). On average, the multi-

model approach reduced the MAE by 6.95 W/m2 to 25.86 W/m2.   

 

6.5 The best multi-model-combinations 
 

To find the best multi-model combination, this thesis investigated the weighting of each model 

for the best MAE per station. Hereby, a general overview was given by the histograms shown 

for every dataset and year (Figure 6). A general pattern is recognizable. Looking at the bar plots 

for ICON, a usual distribution can be seen around 0.5, especially in the year 2018. While ICON 

was weighted the highest most of the time, GFS and NEMSGLOBAL were added to similar 

components. In 2019 and 2020, where 4M-combinations were available, several models were 

frequently not considered in the multi-model mix (frequency of 0 % is relatively high). In 

summary, the weightings of 2019 showed similar tendencies to 2018. In 2020, there was a 

variable weighting of the model ICON, and higher percentages for NEMSGLOBAL and GFS 

more often. In general, the distributions of the models’ ratios were more balanced than in the 

year 2018. Specifically looking at MFGLOBAL, it was used rarely for the combinations. Yet, 

for a small number of stations, it was weighted very high. 

Previous results are summarized in Table 6. The best performing combinations were 

 

 GFS ICON MFGLOBAL NEMSGLOBAL 

BSRN 2018 0.33 0.43 n.a 0.24 

WRDC 2018 0.28 0.48 n.a 0.25 

BSRN 2019 0.24 0.39 0.17 0.21 

WRDC 2020 0.21 0.46 0.14 0.19 

Table 6: Weighting of each model after the best combinations were averaged over all stations per dataset.  
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Figure 6: Histograms showing how each model was weighted for each station to achieve the lowest MAE. 
The x-axis describes, how high the models were weighted, the y-axis represents the number of stations 
affected. From left to right, BSRN 2018, BSRN 2019, WRDC 2018 and WRDC 2020 are shown. M) and n) 
are an exemption and show only results for BSRN 2018 (m) and WRDC 2020 (n). 
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averaged over every station within one dataset. It shows the general best distribution of models  

within a multi-model for each dataset and year. All in all, as previously described, ICON was 

weighted the highest, followed by GFS and NEMSGLOBAL. In 2019 and 2020, MFGLOBAL 

was added, but weighted only a small percentage (up to 17 %). Yet, even though it performed 

quite poorly as a raw model, it still lowered the MAE when combined with other models. For 

2018, a model combination of three models could lower the error. The combination, that would 

bring on average the best results for both datasets can approximately be described as: 

For 2019 and 2020, considering a 4M-combination, the best multi-model can approximately 

be described as: 

Note, that factors were rounded to the 10th since initially the combinations were calculated in 

steps of 10. 

Furthermore, the means of the best combinations with model mixes consisting of either two, 

three or four models were calculated. With these results, it was possible to see, which models 

are preferably used within 2M- and 3M-combinations. Within that, all models were considered 

available. That means for example, by investigating the lowest MAE’s, the best 2M-combination 

out of all available raw models was able to be chosen. Table 7 shows the most frequent best 

performing 2M-combinations and 3M-combinations, that occurred throughout all stations. 

Looking at 2M-combinations first, it becomes clear that the combination ICON = 70 % and 

NEMSGLOBAL = 30 % was the most frequent combination within all samples. Even in 2019 

and 2020, where a fourth raw model was available, ICON and NEMSGLOBAL performed the 

best the most often. For 3M-combinations, the results varied. In general, the combination of 

GFS, ICON and NEMSGLOBAL performed the best. Throughout the weightings, there are 

slight differences within GFS and NEMSGLOBAL. ICON commonly took up 50 % of the 

multi-model, except in 2020, when it was weighted even higher (80 %). Table 8 shows the 4M-

combinations. All models were considered, explaining why no results for the year 2018 were 

available. Particularly in 2019, there were inconsistencies between the model weightings. While 

ICON was weighted the highest in the first two combinations, MFGLOBAL was weighted more 

than 50 % in the third example. Besides this one exception, it was recognizable, that, once 

again, ICON was weighted the highest generally, whereas GFS and NEMSGLOBAL took up 

less weight. MFGLOBAL was being weighted even lower (10 %). The previous results give a 

clue on how to weigh different models whenever using a 2M-, a 3M- or a 4M-mix.  

0.3 ∗ 𝐺𝐹𝑆	 + 	0.5 ∗ 𝐼𝐶𝑂𝑁	 + 	0.2 ∗ 𝑁𝐸𝑀𝑆𝐺𝐿𝑂𝐵𝐴𝐿																		 (Ia) 

0.2 ∗ 𝐺𝐹𝑆	 + 	0.4 ∗ 	𝐼𝐶𝑂𝑁	 + 	0.2 ∗ 𝑀𝐹𝐺𝐿𝑂𝐵𝐴𝐿	 + 	0.2 ∗ 𝑁𝐸𝑀𝑆𝐺𝐿𝑂𝐵𝐴𝐿 (IIa) 
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6.6 Seasonal robustness  
 

To show, if the multi-model approach is robust within a seasonal variability, this thesis analyzed 

the quarterly differences of multi-model combinations and their MAE’s within a year. The first 

approach was to check, if there were overlapping multi-model combinations within the 20 best 

MAE’s of each quarter.  

Table 7: Combinations, that achieved the lowest MAE, shown for 2M- and 3M-combinations. For all 
stations, the 2M- (3M-)combinations achieving the lowest MAE were chosen, and compared to each 
other. The most common best performing combinations within all stations per dataset and year are 
summarized in this table. 

 
 

2-combination Frequency 3-combination Frequency 

Models ICON NEMS-
GLOBAL 

 
GFS ICON NEMS- 

GLOBAL 
 

BSRN 
2018 0.7 0.3 24 % 0.3 0.5 0.2 15 % 

BSRN 
2019 0.7 0.3 13 % 

0.4 0.5 0.1 8 % 

0.3 0.5 0.2 8 % 

WRDC 
2018 0.7 0.3 12 % 

0.4 0.5 0.1 7 % 

0.3 0.5 0.2 7 % 

WRDC 
2020 0.7 0.3 21 % 0.1 0.8 0.1 15 % 

Table 8: Combinations that achieved the lowest MAE, shown for 4M-combinations. For all stations, 
the 4M-combinations achieving the lowest MAE were chosen and compared to each other. The most 
common combinations within all stations per dataset and year are summarized in this table. 

 

 4-combination Frequency 

Models GFS ICON MFGLOBAL NEMSGL  

BSRN 
2019 

0.3 0.5 0.1 0.1 8 % 

0.3 0.4 0.1 0.2 8 % 

0.1 0.1 0.6 0.2 8 % 

WRDC 
2020 0.2 0.6 0.1 0.1 15 % 
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For each dataset and each year, Figure 7 shows bar plots of the frequency of overlapping 

combinations between the four quarters of each station, represented by an index from zero to 

one. The more overlapping combinations, the higher the index. An index of one means, that 

all 20 best combinations of each quarter were the same. For BSRN 2018, 10 of 41 (22 %) 

stations did not have any overlapping combinations. The remaining stations had a varying 

number of overlapping combinations, namely from one to 15. WRDC 2018 had only three out 

of 41 (7 %) stations with no overlapping combinations. The number of stations affected by 

indices from 0.2 to 0.5 is relatively high, and one station showed an index of 1. For BSRN 2019, 

there were more than 27 of 39 (70 %) stations that had no overlapping combinations. Only a 

few had overlapping stations, with an index varying from 0.05 to 0.6. WRDC 2020 showed 

similar results, where 26 out of 34 (76 %) stations had no overlapping combinations. The 

remaining stations had one to six overlaps (0.05 < index < 0.3), whereas two stations formed 

the exemption by having 14 (index = 0.7) and 17 (index =0.85) overlapping combinations. In 

2018, where 3M-combinations were compared, many overlapping combinations were found. 

In 2019 and 2020, only a few overlapping 4M-combinations existed. 

Figure 7: The number of overlapping combinations within the 20 best MAE’s of each quarter of every 
station. The x-axis represents an index describing the relative amount of overlapping combinations out 
of all 20 best combinations within all four seasons of one station. The y-axis shows, how many stations 
are affected. Note, that the resolution of the y-axes between the four bar plots differs. 

a) BSRN 2018 

c) WRDC 2018 

b) BSRN 2019 

d) WRDC 2020 
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For comparing the means of the 20 best combinations between each quarter, the tables for 

chosen stations are shown in Table 9. Several stations, for instance CAB and LATVIA_Z, 

showed similar results within each quarter, whereas others (ASP and ARGENTINA_LQ) 

showed less similarity and the combinations seemed to be more random. Within station 

ARGENTINA_LQ, especially the first and the fourth quarter differed significantly from the 

second and third quarter, mostly seen for NEMSGLOBAL. Stations with less continuity within 

the quarters tended to have fewer or non-matching combinations, as was analyzed in the 

previous section. Therefore, stations with more consistency between each quarter had more 

overlapping combinations.  

 

By calculating the mean of every quarter (Table 10) for all stations, an average and overall 

consistency of the combinations became visible. Looking at BSRN 2018, the maximum 

difference between each quarter within each model was only up to 13 %, whereas for the years 

2019 and 2020 this difference increased (2019: 16 % and 2020: 21 %). Looking at the mean of 

all quarters for every model, an averaged combination was calculated. The results for BSRN 

and WRDC in 2018 seemed to be consistent with each other since they did not differ much. 

Table 9: Means of the 20 best combinations per quarter, demonstrated by four examples. 

 CAB 2018 LATVIA_Z 2020 

quarter GFS ICON MFGL. 
NEMS-

GL. 
GFS ICON MFGL 

NEMS-

GL. 

1st  0.25 0.54 n.a 0.21 0.09 0.15 0.74 0.03 

2nd  0.20 0.50 n.a 0.30 0.00 0.11 0.76 0.05 

3rd  0.17 0.56 n.a 0.27 0.13 0.13 0.72 0.02 

4th  0.24 0.58 n.a 0.16 0.09 0.15 0.74 0.03 

 ASP 2018 ARGENTINA_LQ 2020 

1st  0.64 0.12 n.a 0.25 0.35 0.59 0.02 0.04 

2nd  0.09 0.34 n.a 0.58 0.15 0.18 0.00 0.68 

3rd  0.18 0.25 n.a 0.68 0.11 0.15 0.02 0.72 

4th  0.26 0.58 n.a 0.16 0.54 0.42 0.02 0.03 
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Summarized, to receive a seasonally robust combination for the year 2018, including all 

available models (in total three), the models were combined as followed:  

Looking at the year 2019 and 2020, less of GFS, ICON and NEMSGLOBAL was weighted in 

the multi-model since MFGLOBAL was considered in the multi-mix. All in all, the means of 

the quarters were less consistent, than in 2018. However, the best multi-model, being on average 

seasonally robust throughout all stations for 2019 and 2020, would consist of: 

 

 
 
6.7 Spatial analysis 

 
For a more accurate forecast, it is advantageous to examine different spatial patterns of the 

multi-model combinations that were investigated previously. As examined in Section 6.6, the 

different extent of consistency between the quarters within different stations gave clue that for 

some spatial conditions the multimodal approach could be more suitable than for others. In 

0.3 ∗ 𝐺𝐹𝑆	 + 	0.4 ∗ 𝐼𝐶𝑂𝑁	 + 	0.3 ∗ 𝑁𝐸𝑀𝑆𝐺𝐿𝑂𝐵𝐴𝐿 (Ib) 

0.2 ∗ 𝐺𝐹𝑆	 + 	0.4 ∗ 	𝐼𝐶𝑂𝑁	 + 	0.2 ∗ 𝑀𝐹𝐺𝐿𝑂𝐵𝐴𝐿	 + 	0.2 ∗ 𝑁𝐸𝑀𝑆𝐺𝐿𝑂𝐵𝐴𝐿	 (IIb) 

Table 10: Means of the 20 best combination per quarter averaged over all stations per dataset. 

 
 BSRN 2018 WRDC 2018 

quarter GFS ICON MFGL. 
NEMS-

GL. 
GFS ICON MFGL 

NEMS-

GL. 

1st  0.39 0.34 n.a 0.27 0.35 0.37 n.a 0.29 

2nd  0.31 0.43 n.a 0.27 0.26 0.47 n.a 0.27 

3rd  0.30 0.44 n.a 0.27 0.30 0.45 n.a 0.26 

4th  0.30 0.47 n.a 0.24 0.27 0.50 n.a 0.24 

 BSRN 2019 WRDC 2020 

1st  0.18 0.37 0.25 0.20 0.17 0.35 0.30 0.19 

2nd  0.26 0.38 0.09 0.27 0.27 0.37 0.11 0.26 

3rd  0.32 0.34 0.09 0.26 0.28 0.35 0.12 0.25 

4th  0.21 0.35 0.24 0.21 0.14 0.43 0.32 0.13 
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addition, it is interesting to look at spatial patterns when it comes to the weighting of different 

models. Regions might exist, where one raw model is typically weighted higher or lower than 

in other regions. It is useful to find these patterns to apply that knowledge in operational 

procedures and to choose the best multi-model under certain conditions. In this thesis, the 

spatial distribution of the stations and their number of overlapping combinations were 

investigated. Vague patterns are identifiable in Figure 8. The darker the color of the data point, 

the more overlapping combinations exist. In 2018, there were up to 20 overlapping 

combinations. The stations prone to more consistency within the quarters could be found in 

Europe and in East Asia. Therefrom affected were Japan, Korea, and the Philippines. In 

addition, fewer overlapping combinations were available in the stations throughout North 

America, Australia, and Antarctica. The most striking value of 20 overlapping stations was 

found in Indonesia (WRDC 2018). When looking at the following years, fewer patterns were 

evident because the number of overlaying multi-model-mixes was overall small. In 2019, 

overlapping combinations were found within the stations of North Africa and South America. 

In 2020, one noticeable station found in Latvia reached 17 overlapping combinations. 

Figure 8: Spatial distribution of the number of overlapping combinations of each quarter’s 20 best 
performing combinations per station for each dataset and year. The x-axis represents the longitude, the 
y-axis the latitude. 

a) BSRN 2018 b) BSRN 2019 

d) WRDC 2020 c) WRDC 2018 
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The second part of the spatial analyses examined the distribution of the weightings of the 

different models. For visualization, the combinations of the best MAE per station were used. 

The legend helps to understand, where the model has been weighted high or low. In Figure 9, 

only the stations of WRDC are used to illustrate upcoming results, since similar results can be 

seen for BSRN. First, GFS was examined. Low weightings (0-20 %) could be observed in 

Figure 9: Spatial distribution of the weighting of chosen models within the stations of WRDC. 
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Europe and North Africa. Higher weightings (up to 80 % or more) were seen in America, 

especially in 2018. For 2020 GFS was weighted less, especially in South America. In East Asia, 

GFS was weighted moderately in 2018 (10-50 %), whereas in 2020 it had more weight (up to 

90 %). More striking patterns were identifiable, when looking at the spatial distribution of the 

weightings of ICON. In America, approximately 50 % of ICON were used in the multi-models, 

albeit the tendency in the North was higher than in the South. In Europe, as well as Africa 

(North), ICON was highly weighted (up to 90 %). In contrast, low usage was identifiable in 

Australia, the Antarctic, (South) East Asia (Japan, Indonesia, Philippines, Korea). Here, the 

colors show a vigorous contrast. 

Spatial patterns regarding MFGLOBAL, illustrated in Figure 10, could only be identified for 

the years 2019 and 2020. Low weightings could be observed in Africa, North and South 

America, Australia, and Europe (< 40 %). Several stations in East Asia and in New Zealand had 

in contrast to the other mentioned areas relatively high MFGLOBAL-weightings, in particular 

in 2020 (40-60 %). Remarkably high weightings were found in India, where MFGLOBAL took 

up approximately 90 % of the multi-model, as well as in one station in Europe (LATVIA_Z). 

NEMSGLOBAL was weighted similarly in almost all regions, where stations were available, 

varying from 20 % to 50 %). The following figure illustrates the regional performance showing 

the MAE’s per station of each individual model for both datasets. When both years were 

available for a particular station, the mean MAE was calculated. Different data points showed 

stations only available for one particular year. Results show similar patterns to Figure 9. GFS 

had rather high MAE’s in East Asia and Australia, whereas moderate MAE’s were found in 

Europe. Slightly lower MAE’s were seen in America. ICON had high MAE’s especially in East 

Asia and Australia (up to more than 60 W/m2) and moderate MAE’s in South America (up to 

40 W/m2), North America and Europe. Two exceptional stations in Europe exist, where the 
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Figure 10: Spatial distribution of the weighting of MFGLOBAL within the stations of BSRN (2019) 
and WRDC (2020). 
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MAE is 50-60 W/m2. MFGLOBAL and NEMSGLOBAL had rather high MAE’s (over 60 

W/m2) throughout all stations, whereas MFGLOBAL performed very well in India with MAE’s 

lower than 30 W/m2 as well as for some stations in Africa. NEMSGLOBAL had notably low 

MAE’s in Antarctica, South Africa, and rather moderate to high MAE’s in Europe.  
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Figure 11: Spatial distribution of the performance of each model, represented by the MAE [W/m2]. 
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7 Discussion 
 
When interpreting analyses conducted in this thesis, it must be kept in mind, that the results of 

the multi-model analyses account specifically for these four models. Additional models could 

change the results suggesting an even more precise multi-model mixture. Important to note is 

also, that the multi-models were optimized by the MAE. As the results of Section 6.3 show, it is 

certain that multi-models do not optimize every error in the same way. The choice of a different 

statistical error, such as MBE or root mean squared error (RMSE), through which extreme errors 

are weighted even more, might suggest different combinations. In some literature, different 

statistical errors are even combined considering their different strengths and weaknesses (Behar 

et al., 2015; Huang et al., 2018; Yagli et al., 2019). Nonetheless, in literature, the MAE is a 

widely recognized measure for the performance of the models. Since the goal of this bachelor 

thesis was to give an insight into multi-models and to show their potential of improving the 

forecast, the MAE was considered as fully adequate to achieve this goal.  

The results of the quality control make it possible to roughly estimate the quality of the measured 

data. For example, where high amounts of data gaps could be observed, the impression of 

partially unsatisfying quality was given. However, high gaps arose from a rather small number 

of stations with a substantial percentage of data missing. Data gaps varied strongly, where 

stations were embossed by either very small or very high data losses, with the former 

predominating. The errors seemed to be very random and to depend on the location, since 

similar data gaps could be observed for stations located in the same country (see appendix, 

Table 11). Since this thesis’ analyses were mainly based on average values of all stations, these 

rare, however large amounts of missing data might have considerably influenced or even 

hindered the deriving of reliable means or trends within examined data. Individual stations 

could therefore have had a great impact. Table 3 underlines that since the omission of several 

stations could considerably influence the average, through which important information is 

extracted (such as the realization, that raw models underwent an improvement).  

By applying Filter I, data was deleted and new data gaps were produced. Nevertheless, it must 

be beared in mind, that Filter I removed data during sunrise and sunset. For the purposes of 

the analyses, however, these data points had less relevance because very little radiation is present 

at these times. Also, only small amounts of extreme outliers were present. It is obvious, that 

BSRN data are strongly characterized by values undercutting the lower limits created by the 

thermal offsets of the stations. In contrast, WRDC data had no such errors, but were sometimes 

measured too high and therefore exceeded upper boundaries of extremely rare limits. The 

stations of WRDC seem to be well-calibrated for the thermal offsets. However, there are 
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references in literature questioning, that current calibration approaches can compensate 

directly for these errors (Badescu, 2008). 

Furthermore, all stations possessed several data points exceeding the clear sky radiation. 

Reasons for this are mostly related to DIF, which, under unstable cloud conditions, may exceed 

maximum limits (Alani et al., 2021). In cases like these, it can be beneficial to investigate not 

only GHI, but also its components to conduct tests based on their internal consistency. In fact, 

state-of-the-art instrumentation for global radiation suggests a combination of a pyrheliometer 

and a shaded pyranometer. Therefore, global irradiance is recommended to be calculated as 

the sum of its components, rather than measured directly (C. A. Gueymard, 2008), thereby 

possibly specifying QC procedures and model verifications. Yet, since the analysis of DIF and 

DIR would have gone beyond the scope of this thesis, it was not considered. Quality analyses 

like these show the need for further reduction of extreme errors to prevent convoluted 

conclusions.  

When analyzing the performance of raw models, ERA5 operated particularly well. 

Nevertheless, it was excluded intentionally from the multi-models since it is a reanalysis model 

and therefore cannot be equated with the others. When looking at the raw models’ 

performances, they over- or underpredicted the radiation. For solar radiation forecasts, the 

prediction of the development of clouds is specifically important. When models overestimate 

radiation, they tend to underpredict cloud schemes and vice-versa (Tuononen et al., 2019). 

ERA5 is a good example showing the advantage of combining model outputs with additionally 

derived climatic data and therefore improving the forecast. Furthermore, results give an 

indication to the improvement of raw models within the last years. Yet, for more consistency 

within the time series analyzed in this thesis, data of three consecutive years (2018, 2019 and 

2020) for all stations (from BSRN and WRDC) might have been able to show more significant 

results. 

The multi-model analysis gave interesting results. When comparing the MAE and the MBE of 

different multi-model combinations, various conclusions could be deduced from the distribution 

of the data points. Some 2M-combinations might as well achieve low MAE’s and MBE’s for a 

particular station but are followed by a high variability and uncertainty throughout the different 

weightings of the models. In general, the use of M2-combinations might achieve, to some extent, 

lower MAE’s but seems to be very sensitive to the weightings, possibly lowering the forecast 

security for each station. Looking at the model combinations with more than two models, less 

distribution around low MAE’s could be observed, leading to the assumption that the certainty 

of a more accurate forecast increases when using M3- and M4-combinations. All in all, results 

of the multi-model analyses show that mixing several raw models has the potential to lower the 
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MAE, even outperforming the best raw model (ERA5). Certain multi-models were able to lower 

the error up to a significant 40 % of the raw model’s output. Results also show that the more 

models are used, the lower the forecast error will be. However, the outcome of Table 4 

strengthens the assumption that the adding of models into the multi-model reaches saturation 

at some point. That demonstrates that including more and more models in the operation might 

not be worth the expenses for a relatively little decrease of the forecast error. Hence, this thesis 

examined the best combinations for different numbers of raw models used in the multi-model.  

Considering the availability for up to three models in the year 2018, and up to four models in 

the years 2019 and 2020, this thesis investigated the optimal average combination for all 

stations. Several patterns are recognizable. ICON was always weighted the highest, particularly 

in 2018, when only 3M-combinations were available. In 2019 and 2020, ICON was weighted 

minimally less, which could, on the one hand, be due to the availability of a fourth raw model, 

and on the other hand, due to no improvement of the raw model. In contrast, for GFS and 

NEMSGLOBAL, an improvement throughout the years was recognized, which might explain 

the higher weightings of these models. During 2019 and 2020, there are several 3M- 

combinations that performed well, which explains the high amount of non-used models 

(percentage = 0 %) seen in Figure 5. Furthermore, the weighting of the models seems to be less 

variable in 2018 than in 2019 and 2020, which could be related to the 4th raw model. With 

adding MFGLOBAL, more options possibly lowering the error arise. However, this model did 

not achieve as good results as the other raw models, which could be an explanation for the poor 

usage within the multi-models. Results of Table 7 and Table 8 underline these assumptions, 

showing more variability of well performing multi-model combinations when comparing 2M-, 

3M-, and 4-M combinations. While the best combination for 2M-combinations was obvious, 

numerous combinations for 3M-, and 4M-combinations performed equally well.  

Summarizing these results shows, that ICON is always part of the multi-model, since it performs 

rather well when it comes to the forecast error MAE. GFS takes up a small part, when choosing 

three or four models to combine, but can rather be neglected, when it comes to 2M-

combinations. NEMSGLOBAL seems to perform well especially next to ICON, regardless of 

GFS’s outperformance. Both have a low bias (Table 3). While NEMSGLOBAL tends to 

underpredict, ICON tends to overpredict the radiation. Combined, they seem to equal each 

other out to some extent. For seasonal robustness, the number of the overlapping combinations 

of the 20 best MAE’s gives the first impression, that the multi-model approach is less robust than 

expected and seems to be variable as well as to depend on the location of the station. Even if 

there is no exact concordance of the best combinations, some only differ by 10 % per model. 

Also, merely steps of 10 % were conducted within the analyses. Steps of 5 % or even 1 % would 
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have given a more detailed weighting of different models within the mix. Averaging all 20 best 

combinations, however, leads to more promising results, especially for the year 2018. When 

looking at 2019 and 2020, less consistency can be observed, which underlines possible seasonal 

differences of different raw models expressed especially by 4M-combinations with more 

alternative combinations being available. When comparing the weightings of two different 

approaches conducted within this thesis (Section 6.5 and 6.6), it can be seen, that both 

approaches result in very similar or even the same combinations, which consolidates the 

reliability of these combinations. In general, these results show, that the multi-model approach 

is, on average, a robust method for solar radiation forecasting, whereas the variability of 

seasonal consistency throughout different stations indicates, that spatial differences for 

robustness of the multi-models exist. Identifying these regional differences could have a great 

impact on regional forecast accuracy.  

While investigating spatial analyses, several facts became evident. Usually, NWPs tend to 

perform less well, especially in tropical climates, where convective clouds are climate 

determining factors. For some continents or even countries, raw models seem to perform better, 

than for others. Roughly speaking, NEMSGLOBAL and MFGLOBAL seem to perform 

globally consistent, whereas ICON and GFS perform highly variable. These variabilities can be 

seen when examining the spatial patterns of performance and the weightings of raw models 

within multi-models. Where raw models show high MAE’s and therefore tend to perform less 

well, they are considered in the multi-models to a smaller extent. Where they perform well, they 

are preferably used in the multi-model. To give more detailed conclusions, the spatial resolution 

of available stations was unsatisfying, and therefore no further analyses were conducted. 

Nevertheless, these results indicate the existence of spatial differences. These differences might 

even be related to climatic conditions changing during the year, as the spatial analyses of the 

overlapping combinations (Section 6.7) suggest, showing regional inconsistencies of seasonal 

robustness. Results show the potential for further investigation, which could lead to an even 

more accurate forecast, including adapted weightings of models within multi-models to local 

conditions. 
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8 Conclusion and future research 
 
This thesis has shown that multi-models consisting of multiple NWP’s form a potential approach 

for improving solar radiation forecasts. Compared to several models investigated in this thesis, 

multi-models were able to lower the forecast error by up to 40 %. It was shown, that the higher 

the number of included raw models in the multi-model, the lower the forecast error. Within 

that, however, the significance of improvement decreases. Furthermore, through comparing 

different multi-model combinations, this thesis calculated the globally best performing mixture. 

Raw models having been improved within the last years show the importance of steady 

verification of their performance. Since verification usually relies on local measurements, 

quality-controlling these measurements is of major necessity to conduct reliable information 

about NWP’s. While raw models perform differently well, especially seen in a spatial and 

seasonal context, differently weighing them in certain regions and times per year can lead to an 

even more accurate forecast. That as well shows the potential of not only the investigation of 

global, but also of regional NWP’s to be implemented in multi-models. While already existing 

models are constantly improving, the availability of new models on the market is increasing. 

These findings suggest a perpetual investigation of different multi-model combinations that 

could, for instance, be realized by machine learning methods. Within these, several local 

climatic conditions could be used to calculate the best multi-model automatically and 

periodically, even on a daily basis.  
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Appendix 
 

 
 

WRDC 2018 2020 BSRN 2018 2019 
ALGERIA_T 0.41 59.69 ASP 2.40 24.90 

ARGENTINA_BA 0.32 8.57 BON 0.27 0.22 
ARGENTINA_LQ -- 0.05 BOS 0.26 0.13 
ARGENTINA_P 4.06 1.05 BUD -- 41.36 
ARGENTINA_U 3.74 3.71 BRB 46.55 67.47 
AUSTRALIA_AP 0.10 -- CAR 67.31 -- 
AUSTRALIA_CG 0.74 -- CAB 1.53 0.08 
AUSTRALIA_DA 0.10 -- CNR 1.38 58.63 
AUSTRALIA_MA 3.01 -- COC 0.55 17.40 
AUSTRALIA_WW 2.83 -- DAA 0.00 16.15 

AUSTRIA_G 0.02 0.02 DOM 4.28 10.73 
AUSTRIA_S 0.02 0.02 DRA 0.07 0.08 

AUSTRIA_WHW 0.02 0.02 DWN 1.04 22.27 
CHILE_ET 0.07 1.64 FLO 0.75 5.64 

ESTONIA_TT 0.01 58.49 FPE 0.90 1.03 
GERMANY_H 0.16 0.05 FUA 0.03 0.58 

GREECE_T 2.97 7.07 GAN 91.95 91.51 
ICELAND_R 0.01 0.01 GCR 0.29 0.24 

INDONESIA_BK 9.69 -- GOB 1.99 0.00 
IRELAND_V 0.02 0.02 GUR 7.35 91.51 

JAPAN_F 1.58 25.87 HOW 61.72 -- 
JAPAN_I 2.03 25.57 GVN 9.34 1.36 
JAPAN_K 0.09 25.23 ISH 0.35 0.01 
JAPAN_M 0.29 25.72 IZA 0.08 0.02 
JAPAN_N 0.09 25.23 LAU 0.46 67.40 
JAPAN_S 1.39 25.57 LIN 0.06 -- 
JAPAN_T 0.13 25.23 LRC 0.32 0.64 
KOREA_S 0.40 0.11 MNM 0.07 0.11 
KOREA_A 7.43 -- NEW 32.02 -- 
LATVIA_L -- 1.37 NYA 0.01 1.46 
LATVIA_R 30.59 -- PAY 0.42 0.01 
LATVIA_Z 18.15 0.48 PAL 0.02 16.92 

MOLDOVA_K 0.01 0.01 PSU 0.14 6.91 
PHILIPPINES_QC 0.08 0.08 PTR 61.47 91.51 

PORTUGAL_B 0.82 -- SAP 8.48 0.31 
SLOVAKIA_PG 0.00 25.14 SMS -- 73.48 

USA_B 0.17 0.08 SON 0.35 1.52 
USA_BT 0.35 0.16 SXF 0.18 9.03 
USA_DR 0.18 0.59 SYO 0.47 3.00 
USA_FP 0.23 0.16 TAM 0.50 2.31 
USA_GC 0.17 0.14 TAT 0.00 0.00 
USA_RP 0.17 0.09 TIR 16.74 91.61 
USA_SF 0.18 0.17 TOR 0.00 0.26 

Table 11: Data gaps [%] shown for every single station and both years. 



41 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 12: MAE and MBE [W/m2] averaged over all available stations per year. 

 BSRN 

2018 

BSRN 

2019 

WRDC 

2018 

WRDC 

2020 

BSRN 

2018 

BSRN 

2019 

WRDC 

2018 

WRDC 

2020 

 MAE MBE 

ERA5 43.41 44.01 41.48 27.28 7.37 8.87 10.10 5.65 
ICON 48.31 49.57 44.93 42.84 14.77 10.42 18.20 0.36 
GFS 51.48 51.93 48.82 44.69 15.60 14.89 21.74 12.11 

NEMSGLOBAL 60.47 61.08 53.69 51.07 -7.51 -9.21 -1.95 -5.99 
MFGLOBAL -- 67.39 -- 52.25 -- -41.78 -- -26.97 
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