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ABSTRACT

Shelter temperature and wind forecasts from numerical weather prediction models are subject to large sys-

tematic errors. Kalman filtering and model output statistics (MOS) are commonly used postprocessing methods,

but how effective are they in comparison with steadily increasing resolution of the forecast model? Observations

from over 1100 stations in central Europe are used to compare the different postprocessing methods and the

influence of model resolution in complex and simple terrain, respectively. A 1-yr period with hourly, or at least

3-hourly, data is used to achieve statistically meaningful results. Furthermore, the importance of real-time

observations as MOS predictors and the effects of daily training of the MOS equations are studied.

1. Introduction

The quality of numerical weather prediction has

steadily increased over the last decades. Nevertheless,

temperature and wind forecasts in particular are still

subject to large systematic errors. These errors are not

solely due to imperfect initial conditions and model de-

ficiencies, but also are due to errors of representativeness.

The latter errors are caused by the fact that temperature

and wind are computed for the area of a grid cell and not

the particular location where a meteorological station

is located. To overcome this problem, postprocessing

methods like mean bias removal, Kalman filtering, or

model output statistics (MOS) are used. The purpose of

this paper is to compare different postprocessing schemes

on a large statistical basis and to put them into the per-

spective of steadily increasing resolution of numerical

weather prediction models. The errors due to represen-

tativeness are expected to decrease with increasing reso-

lution so that postprocessing might become less important.

To the knowledge of the author, there are very few

studies comparing different postprocessing methods with

a significant number of stations. Recently, a detailed

study was carried out by Cheng and Steenburgh (2007),

who focused on 145 stations using forecasts of the Eta

model. In this work, the next-generation forecast model is

used and it is set into a perspective of steadily increasing

model resolution. Among the different postprocessing

methods, Kalman filtering in particular is becoming more

popular, as it does not require the long time series needed

for the development of MOS equations. Thus, an in-

creasing number of publications are dedicated to pre-

senting slightly different approaches to Kalman filtering

surface temperature. Some of these studies (Galanis and

Anadranistakis 2002; Libonati et al. 2008; Anadranistakis

et al. 2004) achieve really good results. However, only a

small number of stations or selected time periods are used,

which makes comparisons of the methods rather difficult.

In this study, over 1100 stations from central Europe

are considered. The complexity of the terrain ranges

from flat plains in the Netherlands to the highest peaks

of the Alps. The statistical basis for data analysis is

rather large. A time series of one year, with most sta-

tions reporting hourly data, is used. The study focuses on

shelter temperature as it is available from every station,

relatively reliably measured, and often subject to a large

systematic error in the forecast. Furthermore, we explore

how successfully the same techniques can be applied to

10-m wind speed.

2. Methods and data

a. Model forecast data

The Nonhydrostatic Mesoscale Model (NMM) (Janjic

et al. 2001; Janjic 2003) was run for 2.5 years, computing
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daily 72- and 144-h forecasts at 3- and 12-km horizon-

tal resolution, respectively. The 12-km model domain

stretches from southern Greenland to Iraq, thus cover-

ing all of Europe. The much smaller extent of the 3-km

domain is nested into the 12-km domain and is shown in

Fig. 1. The smaller domain, which is covered by both

models, will be used for the analysis in this work. Note

that the domain contains the alpine mountain range and

thus stations within extremely complex terrain. Initial

and boundary conditions of the 12-km domain were

derived from the Global Forecast System (GFS) model

having a resolution of 0.58. The raw forecasts of the GFS

model are also used in the analysis to underline the

benefits of higher-resolution modeling.

b. Surface observations

Observational data were obtained from the U.S. Na-

tional Centers for Environmental Prediction (NCEP)

using the NCEP Automated Data Processing (ADP)

Global Surface Observational Weather Data (dataset

ds461.0). For the region of interest, this dataset contains

1150 official weather stations, shown in Fig. 1. All sta-

tions report temperature on an hourly or at least three-

hourly basis. Around 800 stations report wind speed.

Depending on the standard deviation of the model to-

pography in a 3 3 3 filter, the stations are split into a

group of complex as well as a group of simple terrain, as

the effects of the higher model resolution are more vis-

ible in complex terrain. The group of stations in complex

terrain is much smaller (180 stations) and thus not really

visible in the statistics of all stations.

c. Description of the Kalman filter

To point out the specifics of the Kalman filter used in

this study, a brief description is given here. Further de-

tails can be found in Kalman (1960), Brockwell and

Davis (1987), and Homleid (1995). The Kalman filter

is used to iteratively predict the expected systematic

model errors xt at time t using previous values of ob-

servable errors yt. We define the error as the difference

between observed and modeled temperature. Accord-

ing to the Kalman filter theory, the evolution of xt and

yt is given by

xt 5 Ftxt21 1 wt and (1)

yt 5 Htxt 1 vt, (2)

with the coefficient matrices Ft and Ht and the random

vectors wt and vt that all need to be defined. The pre-

diction equations

~xt 5 Ftxt21 and (3)

~Pt 5 FtPt21FT
t 1 Wt, (4)

are used to give an optimal estimate of ~x
t
and ~P

t
at time t

with the help of the previous values of x
t21

and P
t21

. The

latter is a covariance matrix needed in the updating

Eqs. (5)–(7), which can be computed as soon as the new

observations for yt become available. Here Wt is the

covariance matrix of wt:

FIG. 1. Map of the 3-km NMM forecast domain. Observational sites in complex terrain are shown as circles; others are

shown as triangles.

1628 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 50



xt 5 ~xt 1 Kt(yt 2 Ht
~xt), (5)

Kt 5 ~PtH
T
t (Ht

~PtH
T
t 1 Vt)

21, and (6)

Pt 5 (I 2 KtHt)
~Pt. (7)

The term Kt is the so-called Kalman gain and de-

termines how quickly the filter adapts to changing con-

ditions. At the start of the filter, initial values for xt and

P
t
have to be specified, but they will very easily adapt to

the real values in just a few iterations. So far, the values

of F
t

and H
t

as well as wt and vt were assumed to be

known. As we cannot really determine the evolution of

x and y, we have to assume an identity matrix for Ft and

Ht, which significantly simplifies the original Eqs. (1)–

(7). The system covariance matrix Wt and observation

covariance matrix Vt can be reduced to diagonal form, if

we assume that correlations of system and observation

errors of different forecast times are negligible. To es-

timate V
t
, Libonati et al. (2008) used the mean square

error of a linear regression of observations and model

forecast and a constant tuned value, following Homleid

(1995) for Wt. As we did not favor to use time invariant

values, we implemented the procedure of Galanis and

Anadranistakis (2002) to compute the scalar values based

on data of the last 7 days:

wt 5
1

6
�

6

i50 (xt2i 2 xt2i21) 2

�
6

i50
(xt2i 2 xt2i21)

7

2
664

3
775

8><
>:

9>=
>;

2

(8)

and

yt 5
1

6
�

6

i50 (yt2i 2 xt2i) 2

�
6

i50
(yt2i 2 xt2i)

7

2
664

3
775

8><
>:

9>=
>;

2

.
(9)

d. Description of the MOS

The MOS technique (Glahn and Lowry 1972) devel-

ops a statistical relationship between observed and

forecasted weather elements and applies these relation-

ships to raw model output. A multiple linear regression is

used to express the predictand ~z as a linear combination

of predictors mi:

~z 5 a 1 b1m11 b2m2 1 � � � 1 bnmn, (10)

where a and bi are the regression constant and co-

efficients, respectively.

MOS equations were automatically derived for each

individual station. To assure temporal consistency of the

MOS prediction, the statistical relation was based on all

seasons of the year and all forecast hours of the day.

Different MOS equations for different seasons lead to

an inconsistency when the MOS equations are switched.

This problem can be reduced by overlapping the time

periods during the training phase but it never completely

disappears. Furthermore, the partitioning into seasons

significantly reduces the statistical sample size, which

increases the length of the time series needed to train

the MOS. Without temporal splitting, a sample size of

over 6000 data points per year for a 24-h forecast hori-

zon can be achieved, which leads to a solid statistical

relation. Surface variables and upper-air model output

up to a height of 500 hPa were used as input for the

multiple linear regression, yielding about 100 possible

predictors. Because of the large number of stations and

predictors, the selection of the best predictors was done

by an automated process, using the stepwise approach.

It has to be noted that regression equations have to be

derived for the 3- and 12-km model runs separately, as

differences in the model output can be significant for

some stations.

In general, MOS uses not just model data as predictors

but also the most current observations, usually from the

day before. As the NMM computes very reliable fore-

casts of 2-m temperature, MOS equations without re-

cent observations are also developed and will be shown

for comparison in the result section.

e. Statistical analysis

To better understand the effects of different post-

processing approaches, statistics resolving the stations

but integrating over time, statistics resolving time but

integrating over stations, and statistics on an event basis

are carried out. For all analyses, the temperature or

wind speed of the closest model grid point is taken

without performing horizontal interpolation to the exact

location of a station. All errors are computed on the

hourly or 3-hourly raw data. No spatial or temporal

averaging is done prior to the computation of errors.

Thus, if xt,i represents a modeled temperature at time t

and station i, and yt,i is the corresponding observation,

the RMS error Erms and absolute error Eabs are com-

puted as

Erms 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�(yt,i 2 xt,i)

2

r
and (11)

Eabs 5
1

n
�jyt,i 2 xt,ij, (12)

where n is the number of considered data pairs and the

summation is done over t or i, respectively.
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3. Results

a. Station-based yearly statistics

1) TEMPERATURE

To see the total impact of postprocessing methods, the

overall temperature error for the whole year is shown in

Fig. 2. The RMS, as well as the absolute error (Fig. 3), is

plotted for every station, respectively. For better read-

ability, the stations are ordered corresponding to their

errors in each diagram and also in each group. Hence,

the 500th station of the 3-km MOS can be another sta-

tion in the 12-km MOS. It can be clearly seen that MOS

achieves the smallest errors throughout all stations, fol-

lowed by the Kalman filter, and finally the raw forecasts.

This ranking is seen equally in the absolute as well as in

the RMS error. An absolute error smaller than 1.5 K is

achieved at over 1000 stations with MOS, at about 750

stations with Kalman filtering, and at only 400–550 sta-

tions with the raw forecasts at different resolutions. In-

terestingly, the benefit of a higher model resolution is

almost invisible for the MOS forecast, increased with

Kalman filtering, and largest for the raw forecasts. The

postprocessing methods slowly approach a minimal RMS

error of around 1 K for the best predicted stations. At this

lower end, MOS can still reduce the RMS of the raw

forecast by about 0.5 K, whereas little can be gained with

Kalman filtering. In fact, the MOS curve of the RMS

error is always about 0.5 K less than the Kalman-filtered

forecast. Note that this does not imply that at any station

MOS is 0.5 K better than Kalman filtering, as the stations

do not correspond in this diagram.

To visualize the improvement at each station, Fig. 4

shows the 3- and 12-km raw and 3-km MOS forecast at

corresponding stations. Hence, the 500th station is the

same station in MOS and raw forecasts. As can be ex-

pected, the postprocessing methods are most effective

for stations with large errors and become less effective

at stations already having a small error. Furthermore,

the MOS forecast is better than the raw model output at

every station. However, the raw forecasts at 3-km res-

olution do not show such a consistent improvement over

the 12-km raw forecasts.

2) WIND SPEED

Similar to temperature, the RMS error of the 10-m

wind speed is shown in Fig. 5. The overall result looks

remarkably similar to temperature. However, for wind

speed the improvement of MOS compared to Kalman

filtering is larger than for temperature. Even though not

FIG. 2. RMS errors of the 2-m temperature forecasts computed at

40-, 12-, and 3-km resolution. Shown are the raw model forecasts of

the closest grid point, as well as the Kalman-filtered (KF) and MOS

forecasts for the first 24 h. All errors are plotted in increasing order.

FIG. 3. As in Fig. 2, but for absolute error.

FIG. 4. RMS errors of the 2-m temperature forecasts computed at

12- and 3-km resolution. Shown are the raw model forecasts of the

closest grid point, as well as the 3-km MOS forecasts at corre-

sponding stations for the first 24 h.
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shown, it is interesting to note that both postprocessing

methods managed to remove the bias of the forecast.

Again, the benefit of the higher model resolution is de-

creased by postprocessing but is generally larger for

wind speed than for temperature.

b. Temporal variation of forecast errors

1) TEMPERATURE

From the previous analysis, one might conclude that

MOS is always better than Kalman filtering, but it is

worth looking at the statistics on a daily basis. Hence, all

RMS and absolute errors occurring in the 24 h of one

day at all stations are summarized in Figs. 6 and 7, re-

spectively. For clarity of presentation, the focus is on the

3-km resolution. The 40-km raw forecast is also shown as

a reference. It is interesting to see that the raw forecasts

are still worse than the postprocessed forecasts, but the

difference between Kalman filter and MOS becomes

less apparent. In fact, the Kalman-filtered forecast is

often almost as good as MOS, with the exception of a

few situations where it is much worse, which explains

the large differences between MOS and Kalman, visible

in Figs. 2 and 3. However, we have to keep in mind that

these results are aggregated over all stations and 24 h,

thus we cannot conclude about the number of correct

forecasts. Interestingly, the postprocessed as well as the

raw forecast errors do not have a seasonal trend. This is

a sign for the high quality of the forecast model but also

a consequence of the not-very-continental regime in

central Europe. Hence, training the MOS equations for

specific seasons did not result in improved forecasts.

Whenever the weather conditions change, the Kalman

filter has to adapt to the change, which leads to signifi-

cant errors in the Kalman-filtered forecast. In these sit-

uations, the Kalman filter has significant shortcomings,

which was demonstrated, for example, by Cheng and

Steenburgh (2007). Note that because of the relatively

small study area, shown in Fig. 1, more than half of the

stations used in the analysis can be affected by a relatively

small frontal system within one day. Thus, the mean error

over all stations presented here will show such an event.

However, the findings focusing on such special weather

situations might overestimate the discrimination between

MOS and Kalman filter, which will be shown in the sec-

tion dealing with event-based statistics.

2) WIND SPEED

Figure 8 shows the time series of wind speed RMS

errors for the time range of available wind observations.

For clarity, only the 3-km resolution is shown but only

little difference to the 12-km resolution was found. In

fact the MOS forecasts are almost identical. Notewor-

thily, the advantage of MOS over Kalman filtering is

more apparent than for temperature. Furthermore, the

forecast errors do not show a seasonal trend.

c. Event-based statistics

1) TEMPERATURE

For a user of model forecasts it might be more helpful

to see how many times a forecast achieves a certain level

of quality. In Fig. 9 the percentage of all individual

FIG. 5. RMS errors of the 10-m wind speed forecasts computed at

12- and 3-km resolution. Shown are the raw model forecasts of the

closest grid point, as well as the KF and MOS forecasts for the first

24 h. All errors are plotted in increasing order.

FIG. 6. Time series of 2-m temperature RMS errors based on all stations for the 3-km-resolution raw, KF, and MOS

forecasts. As a reference the 40-km raw forecast is shown as well.
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forecasts with an RMS error smaller than 1.5 and 2 K are

shown. It can be seen that throughout the first 24 fore-

cast hours, 80% of the MOS forecasts achieve an RMS

error smaller than 2 K, which is significantly better than

a raw forecast and also better than a Kalman-filtered

forecast. Note that the forecast hours in Fig. 9 corre-

spond with an offset of one hour to the local time, as

model forecasts start at 0000 UTC. Thus, the raw model

forecast shows a diurnal course with a minimum accu-

racy in the morning and early afternoon. The Kalman

filter can close this gap but not significantly improve the

raw forecasts during nighttime. Differences between the

3- and 12-km MOS are again negligible.

The cases documented in literature where the Kalman

filter achieves best results are related to stable anticy-

clonic conditions. Hence, rather large areas and thus

many stations are affected simultaneously. Further-

more, anticyclonic conditions last several days and the

signal should be visible for a few consecutive days.

Hence, given the rather small size of the study area,

there should be time periods with a significantly larger

number of events where the Kalman filter clearly out-

performs MOS. To see how relevant such cases are,

Fig. 10 shows the number of individual forecasts on each

day where the Kalman filter was better than MOS and

also the number of cases where MOS was better than the

Kalman filter. In order for an event to be considered,

the difference between Kalman filtering and MOS has

to be larger than 0.5 K. It can be seen that MOS is

consistently better than the Kalman filter, except for

four days where the Kalman filter is similar to MOS.

However, there are no periods of consecutive days where

the Kalman filter is better than MOS. In relation to MOS,

the Kalman filter is slightly worse during wintertime.

Considering the large areas, and thus the large number

of stations that are affected by cyclones or high pressure

systems, the daily variations fluctuate little and seem to

be only weakly influenced by synoptic conditions. For

the majority of locations, it thus seems very difficult to

identify in advance if a Kalman-filtered forecast or MOS

will be better. A lot of local experience will be needed,

as if there existed a simple pattern, MOS would have

implicitly used it.

The synoptic conditions heavily influence the quality

of the forecast, but cannot clearly be used to identify the

ideal postprocessing method. Furthermore, to maximize

the number of good forecasts, MOS is the preferred choice.

2) WIND

In analogy to Fig. 9, the percentage of all individual

wind forecasts with an RMS error smaller than 1 and

1.5 m s21 is shown in Fig. 11. Interestingly, there is no

daily course of the forecast skill, neither in the raw nor

in the postprocessed results. In comparison to tempera-

ture, there is again a larger difference between MOS and

the Kalman filter. The differences between the high and

low resolutions are about 5% for the raw and Kalman-

filtered results and negligible for the MOS forecast.

FIG. 7. As in Fig. 6, but with absolute error.

FIG. 8. Time series of 10-m wind speed RMS errors based on all stations for the 3-km-resolution raw, KF, and MOS

forecasts.
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d. The role of recent observations

Traditionally MOS includes the most recent obser-

vations as predictors. However, the quality of today’s

high-resolution NWP models has reached a level where

the use of recent observations might become unneces-

sary, making operational implementations of MOS much

easier. This can be seen in Fig. 12, where the 12-km MOS

as well as the 3-km MOS with and without recent ob-

servations is shown. In fact, the benefit of including re-

cent observations in the MOS forecast is not visible

anymore. Furthermore, the differences between the 3-

and 12-km MOS can be neglected, especially if put in

perspective to the 3-km raw forecast shown in gray,

which has a much larger error. It has to be noted that the

benefit of recent observations naturally decreases with

increasing forecast lead time and thus should have the

most effect on the first day analyzed here. The impor-

tance of observations in frequently updated nowcasting

applications was not studied, but the results presented

here are for the first 24 h of the forecast, thus also in-

cluding the nowcasting period.

Obviously, Kalman filtering requires a steady flow of

recent observations, which makes its application for

operational use more complicated and less reliable be-

cause of observational gaps and errors.

e. Adaptive short-term MOS

The most significant disadvantage of MOS is the long

time series of modeled and observed data needed for

deriving the MOS equations. Mesoscale models typi-

cally are subject to a relatively fast development and

implementation cycle, particularly in the physics rou-

tines. But changing model physics can have large impact

on the model forecast; thus, previously trained MOS

equations are not optimal anymore for the changed

model. The introduction of updates in an operational

forecast model might thus not increase the forecast skill,

if unchanged MOS postprocessing is used. The costs to

historically rerun an entire year with an updated model

are often too high; hence the old MOS equations have to

be used for the updated model. If MOS equations are

trained on a short time period, the regressions are un-

stable and likely to produce outliers in conditions slightly

different than used for training. However, as the weather

generally has some persistence, it might be sufficient to

develop MOS equations based on a smaller number of

days directly preceding the forecast. This is done in

analogy to the Kalman filter. Hence, every day the MOS

equations are newly derived based on the last 30, 60, or 90

days and then only applied to the next forecast run. Ob-

viously, this procedure is more complex to implement and

FIG. 9. Percentage of hourly forecast with an error smaller than (left) 1.5 and (right) 2.0 K. Data of all 1050 stations

from the year 2009 are used.

FIG. 10. Percentage of hourly forecast in which MOS has a smaller error than the Kalman filter and in which the

Kalman filter has a smaller error than MOS. Data of all 1050 stations from the year 2009 are used.
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much more time consuming in operations than a standard

MOS, as lots of data have to be kept in fast accessible

archive storage. This procedure was simulated for 180

days and the results are presented in Fig. 13. The time

windows used for training are set to 30 and 90 days. For

comparison, the standard MOS as well as the raw forecast

is shown. It can be clearly seen that the 90-day training

period is superior to the shorter 30-day period, but both

are less accurate than the standard MOS. A second im-

portant result is the presence of outliers, which we define

as forecasts being worse than the raw forecast. Clearly,

the number of days with outliers is reduced when the

training period is increased from 30 to 90 days, but some

still remain. It also has to be kept in mind that every point

in Fig. 13 represents 1150 stations evaluated on every

hour of that day. Hence it is a mean error that hides the

real magnitude of the error at some stations. In summary,

and unfortunately, this approach does not give a useful

solution to shorten the training period needed for a MOS.

f. Comparison in complex topography

So far, little difference in the quality of the 3- and

12-km forecasts was noticeable. This suggests that the

increase in resolution from 12 to 3 km has very little

effect on the temperature forecast and little on the wind

forecast. This seems in fact to be true in flat terrain.

However, if a time series of only the 180 stations in com-

plex terrain are considered (Fig. 14), differences become

much more apparent. Figure 14 appears a bit confusing,

but we can easily identify two groups. The first group

consists of the two curves with highest error and contains

the raw forecasts at 12 and 3 km. Among the raw fore-

casts, the higher resolution is clearly superior. The sec-

ond group shows the postprocessed forecasts at 3- and

12-km resolution. Almost every day, MOS is better than

the Kalman-filtered forecast. Note that the 12-km MOS

is not shown, because it is again nearly identical to the

3-km MOS. In the Kalman-filtered forecast, some days

can be identified where the 3-km resolution beats the

12-km model, but differences are smaller than for the raw

forecast. As postprocessing methods can remove sys-

tematic errors, like those caused by height differences,

nonlinear processes are playing the key role. In fact, in

complex terrain the 12- and 3-km forecasts often differ in

cloud cover and precipitation, which results in different

temperature forecasts. Müller et al. (2010) studied cold

air dynamics and fog/low stratus formation in complex

terrain and noticed the need for very high resolution to

FIG. 11. Percentage of hourly forecast with an error smaller than (left) 1.0 and (right) 1.5 m s21. Data of all stations

with wind observations (800) are used.

FIG. 12. Time series of 2-m temperature RMS errors based on all stations. The 3-km raw forecast, MOS forecasts at

12- and 3-km resolution using no current observations, and a 3-km MOS forecast using observations from the pre-

vious day are shown.
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resolve cold air flows, cold air pooling, and cloud for-

mation. As MOS considers many variables, it can im-

plicitly know about systematically wrong cloud cover and

adjust temperature accordingly, which is not possible for

the Kalman filter that relies on a single variable. Hence,

the Kalman filter is much more dependent on the raw

temperature forecast than MOS, and the effect of model

resolution is more visible.

Generally, the differences caused by the choice of the

postprocessing method are larger than those caused by

the resolution of the forecast model. The MOS forecast

quality seems not to improve by the increase in resolu-

tion from 12 to 3 km. This is very interesting as it seems

that the true predictive skill of the temperature forecast

does not increase beyond a resolution of 12 km. This can

also be seen in Fig. 2, where over half the stations have

about the same error at 3 and 12 km in the raw forecast.

Clearly, the higher resolution improves the raw forecast

in complex terrain, but postprocessing can eliminate sys-

tematic errors. The resolution increase beyond about

10 km is less visible for Kalman-filtered forecasts and al-

most unnoticeable for MOS forecasts.

It can be expected that increasing the resolution to

about 1 km would have a significant impact on the raw

forecast but almost no impact on the MOS forecast.

Note that raw forecasts in complex terrain like the Alps

have a significant bias, as even the 3-km resolution is

unable to resolve the individual valleys. At 1 km, the

valleys are fairly well resolved, which would result in

a much better representation of local wind systems and

station elevation in the model. Nevertheless, even with

perfect representation of height and valley wind sys-

tems, the postprocessed forecasts are expected to be

better, as it is already the case in flat terrain.

4. Discussion

Overall, MOS outperforms the Kalman filter. This is

clearly seen in the RMS error as well as in event-based

statistics. To the knowledge of the author, Libonati et al.

(2008) achieved the most impressive results with Kalman

filtering, where the RMS error of stations in Portugal was

around 1.1 K, which is actually very difficult to achieve

even for MOS. When we applied their approach, the

average RMS error of the 1150 stations was significantly

higher around 1.8 K. The reason might be that many

more stations located in all kinds of terrain were used.

Furthermore, all stations of this study are located fur-

ther north and thus are affected by more frontal systems

than Portugal, which introduces fast weather changes

that are more difficult to forecast.

In terms of temperature, the increase in resolution

from 12 to 3 km has negligible impact on MOS and

a small effect on Kalman-filtered forecast in complex

FIG. 13. Time series of 2-m temperature RMS errors based on all stations. The 3-km raw forecast, the standard MOS

forecast, and MOS forecasts trained over the most recent 30 and 90 days are shown.

FIG. 14. Time series of 2-m temperature RMS errors based on stations in complex terrain for raw, KF, and MOS

forecasts at 3- and 12-km model resolution. Note that the 12-km MOS is not shown because it is almost identical to the

3-km MOS.
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terrain. The largest differences are found in the raw

model forecast for stations in complex terrain. For wind

speed, the increase in resolution is more beneficial than

for temperature but is again negligible for MOS fore-

casts. It is very important to note that postprocessing

requires the presence of a meteorological station and

can only correct for the conditions at that location. Ex-

trapolating station forecast into the area is quite com-

plicated and error prone, especially in complex terrain.

Thus, if forecasts have to be provided for locations other

than the observing sites, the higher resolution becomes

much more important, as postprocessing methods can-

not easily compensate for the lack in resolution. From an

operational point of view, considering that the 3-km run

requires about 100 times more computing power than

the 12-km run, might it be more useful to use the im-

mense computing power of a single high-resolution run

for lower-resolution ensemble forecasting or more de-

tailed physics? However, often the more detailed phys-

ics are only applicable or useful at a higher resolution.

For the development of severe storms and convection in

general, the higher resolution carries more physical re-

alism, and can provide higher skill also in other variables

not analyzed in this work.

5. Conclusions

An analysis of shelter temperature and wind forecasts

at 1150 stations in central Europe, providing hourly or at

least 3-hourly data, was carried out for a 1-yr period.

Significant differences in the forecast quality of a global

model and higher-resolution mesoscale models can be

found. For raw model output of temperature and wind

speed, the error is reduced with increasing resolution,

especially in complex terrain. With Kalman-filtered fore-

casts, the benefit of a resolution higher than 10 km be-

comes smaller and almost disappears if MOS is used. It

is likely that the current predictive skill of temperature

forecasts is around 10 km. A higher resolution will

further reduce the model bias, especially in complex

terrain, but this can also be achieved with statistical

postprocessing if observations are available. Further-

more, a postprocessed temperature forecast at 12-km

resolution outperforms a raw forecast at 3 km, regard-

less of the complexity of the terrain. However, it has to

be emphasized that this only holds for locations where

observations are available and not everywhere. Statistics

integrating over many days demonstrate a clear superi-

ority of MOS. However, if the temporal evolution is

analyzed, Kalman filtering achieves comparable results

to MOS in many cases for temperature. Almost on any

given day, an MOS temperature forecast is significantly

better than Kalman filtering in 35% of all individual

forecasts. The events where the Kalman filter beats

MOS show a slight seasonal trend from around 18%

during winter to approximately 22% during summer.

Interestingly, wind forecast are significantly more im-

proved by MOS than by Kalman filtering. With the ex-

ception of nowcasting applications, high-resolution NWP

models are capable of providing strong MOS predictors

that cannot be improved upon by including recent ob-

servations. Dynamically training an MOS with always the

latest data from the last 30 to 90 days produces many

outliers in the forecast. Unfortunately, such an approach

cannot be used as a strategy to shorten the time period for

training an MOS.
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