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Abstract: Affecting millions of individuals yearly, malaria is one of the most dangerous and deadly
tropical diseases. It is a major global public health problem, with an alarming spread of parasite
transmitted by mosquito (Anophele). Various studies have emerged that construct a mathematical
and statistical model for malaria incidence forecasting. In this study, we formulate a generalized
linear model based on Poisson and negative binomial regression models for forecasting malaria
incidence, taking into account climatic variables (such as the monthly rainfall, average temperature,
relative humidity), other predictor variables (the insecticide-treated bed-nets (ITNs) distribution and
Artemisinin-based combination therapy (ACT)) and the history of malaria incidence in Dakar, Fatick
and Kedougou, three different endemic regions of Senegal. A forecasting algorithm is developed by
taking the meteorological explanatory variable Xj at time t− `j, where t is the observation time and
`j is the lag in Xj that maximizes its correlation with the malaria incidence. We saturated the rainfall
in order to reduce over-forecasting. The results of this study show that the Poisson regression model
is more adequate than the negative binomial regression model to forecast accurately the malaria
incidence taking into account some explanatory variables. The application of the saturation where
the over-forecasting was observed noticeably increases the quality of the forecasts.

Keywords: epidemiological data; meteorological data; generalized linear models; parameters estimation;
forecasting

1. Introduction

Malaria is a disease caused by a parasitic infection transmitted by a mosquito (female
Anophele). It can also be passed to human by blood transfusion, sharing needles or
congenitally [1]. According to the 2020 World Health Organization (WHO) report, malaria
caused 627,000 deaths, 95% of which were registered in African Region. The number of
malaria cases decreased from 2000 (238 million reported cases) to 2019 (229 million reported
cases). In spite of this diminution, malaria is still endemic in many countries in the world,
particularly in Africa. In Senegal, it constitutes a major public health problem, according to
the “Programme national de lutte contre le paludisme (PNLP)”.

Several mathematical or statistical models were developed for predicting malaria case
incidence. Generalized Linear Models (GLM) [2–4] were used in the literature. Examples
of GLM include the Poisson regression developed first by Nelder and Wedderburn [5], the
negative binomial (NB) regression [3], the quasi-Poisson regression [5] and the zero-inflated
regression [6]. In general, the Poisson regression is very popular for data fitting but its
mean-equal-variance property can limit its application on over-dispersed data [5–7]. Also
in [8], a multivariate generalized Poisson regression model was defined and studied.

In [6], a model that adapts to malaria incidence using the zero-negative binomial was
developed based on climate variables and mosquito density in Limpopo province, South
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Africa. The results in [6] show how rain and average temperature affect the incidence
of malaria. In [9], authors introduced a model that takes into account the incidence of
malaria morbidity and mortality in Akure, Nigeria. In that work, the negative binomial
regression model, with log as link function, was used to express the malaria morbidity and
mortality incidence as functions of climatic variables. Then, the autoregressive integrated
moving average (ARIMA (p, d, q)) model was used to fit the residuals. The findings in [9]
revealed that an increase in minimum temperature and relative humidity at a 1-month lag
significantly increases the chance of malaria transmission and thereby leads to an increase
in the number of inpatient and outpatient individuals, as well as the total number of
malaria cases. In another study [10], a Bayesian spatiotemporal analysis has been made to
describe year-to-year variation of malaria incidence data from Zimbabwe, and in relation to
variation in climate risk factors to enhance our ability of developing an operational malaria
early warning system (MEWS) and determine areas prone to climate-driven epidemics.
As methods in [10], the authors used the annual proportion of monthly malaria cases and
Markham’s seasonality index to display between-year variation in the data. Then, the data
were fitted with the Bayesian negative binomial models such as the non-spatial model, the
spatial model and the spatiotemporal model. In addition, a Markov Chain Monte Carlo
(MCMC) simulation was applied to estimate the model parameters. As a result in [10], it
was found that a high annual malaria incidence coincides with high rainfall and relatively
warm conditions while low incidence years coincide only with low rainfall. In conclusion,
all models indicated that the mean annual temperature, rainfall, vapour pressure and
normalized difference vegetation index (NDVI) were strong positive predictors of increased
annual incidence rate. In [11], the authors applied and compared a Bayesian and classical
methods of parameter estimation on the effect of climatic factors in the context of modelling
malaria incidence in Limpopo Province, South Africa. In that work, the authors estimated
the parameters from a negative binomial model by a Bayesian estimation and maximum
likelihood estimation. As result, in [11] the Bayesian method appears more robust than
the classical method in analyzing malaria incidence. In [12], the authors include the link
between CD4 cell count and influencing covariates of biometric and demographic factors
from negative binomial mixed models. A GLM is applied in [13] where authors provide
spatially explicit burden estimates of malaria in Senegal using the Senegal Malaria Indicator
Survey (SMIS) data and Bayesian geostatistical Zero-Inflated Binomial models based on
variable selection methods for spatial data.

A comparative study of existing models was carried out across six countries of Sub-
Saharan Africa—Burkina Faso, Nigeria, DRC, Mali, Cameroon, and Niger—over a period
of 28 years on malaria incidence in [14]. It is reported in [14] that the SARIMA model was
found to work best with time series data that exhibited periodic or seasonal characteristics
and was able to predict the seasonal trend of malaria. That model type is only suitable
for a stationary or seasonal process. The negative binomial model correctly identified
the association between climate variables (taken as explanatory variables) and the rate of
malaria transmission. That last model type can make good short-term forecasts, but is not
ideal for prediction in subsequent years.

In this paper, a GLM is used in the context of forecasting falciparum malaria incidence
count per month based on climate variables and history of falciparum malaria incidence
count per month in three endemic regions of Senegal: Dakar (hypoendemic zone), Fatick
(endemic zone), and Kedougou (hyperendemic zone). The choice of these three regions is
motivated by data availability (notably the presence of villages where longitudinal studies
have been conducted), but also by geographical differences: influence of the ocean in the
Dakar peninsula, tropical climate in Kedougou, and savanna landscape in Fatik. These
fundamental geographical differences allow us to test the applicability of GLMs under
drastically different evolutions of the climate variables. A machine learning approach is
developed, based on a separation of the data into a train-set to estimate the parameters by
maximum likelihood and a test-set to assess the forecast accuracy. Addition and ablation
studies are developed to show the influence of each explanatory variable in the forecasts.
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A Vuong test reveals that the Poisson distribution is preferred to the negative binomial
distribution to model the malaria incidence given the explanatory variables. The forecast ac-
curacy of GLMs with various distributions (Poisson, negative binomial, and Gaussian) and
link functions (identity, log, and sqrt) is compared in terms of several model performance
metrics. Whereas the best distribution-link combination varies according to the endemic
region of interest and the performance metric, the experiments lead to the conclusion that
the Poisson distribution with the identity link is overall the most suitable combination.
In addition, a saturation method is introduced on the rainfall variable to remedy some
overestimations observed during the forecasts. This method has reduced by 4% in the sense
of MARE, the over-estimation occurring at the end of 2015 in Dakar.

The paper is organized as follows. The available data are presented in Section 2.1. The
models are described in Section 2.2. The estimation and forecasting method containing the
train-test machine learning method, the principles of forecasting, the algorithmic protocols,
and the saturation concept are presented in Section 2.3. Experimental results and discussion
are reported in Section 3 and conclusions are drawn at the end.

2. Materials and Methods
2.1. Data and Notation

There are two principal malaria transmission zones in Senegal:

• “Faciès tropical”: corresponding the regions of Ziguinchor, Kolda, Tambacounda, and
Kedougou. In that zone, the raining season is the longest and most intensive in the
country and covers 5 to 6 months. Malaria cases are observed between 4 to 6 months
and the transmission is high (20 to 100 infected bites/human/year).

• “Faciès sahélien”: corresponding the regions such as Kaolack, Fatick, Diourbel, Dakar,
Thies, Louga, Saint-Louis, and Matam with a less intensive rainy season and covers 2 to
3 months. The transmission is very low in general (0 to 20 infected bites/human/year).

We are interested in three regions of Senegal: Dakar (hypoendemic zone), Fatick
(endemic zone), and Kedougou (hyperendemic zone) located in the map presented in
Figure 1.

The historical data, such as the monthly falciparum malaria incidence count, the
distributed insecticide-treated bed-nets (ITNs), and the distributed Artemisinin-based
combination therapy (ACT), between 2008 and 2016, come from the “Programme national
de lutte contre le paludisme (PNLP)” of Senegal (https://www.dropbox.com/s/0p4uc2di
hfhr9cb/Dakar.csv?dl=0 (accessed on 3 July 2023)). In this study, we consider as malaria
cases, the cumulative number of confirmed tests by Rapid diagnostic tests (RDTs) during
the month, in all individual groups [15,16]. Malaria cases are confirmed by the methods
validated by the “Programme national de lutte contre le paludisme (PNLP)” of Senegal in
accordance to the WHO guidelines. The main method is the rapid diagnostic test (RDT)
even if it has been recently discovered that this test could miss up to 20% of malaria
cases [17]. Due to unavailability of the RDT in some deep localities and the lack of materials
to keep it, some districts use the “goutte épaisse”, which is a very old method and less
sensitive than the RDT. There also is a more sensitive but very expensive test: polymerase
chain reaction (PCR), used only in some high level medical research institute in Senegal.
Then, we grouped the data from all the different big sanitary districts in each region such
as Dakar, Fatick, and Kedougou. The hourly meteorological data, such as the temperature,
the relative humidity, and the rainfall, between 2008 and 2016, come from meteoblue
(https://www.meteoblue.com/historyplus (accessed on 3 July 2023)). To obtain adequate
meteorological data for our study (monthly time unit) we add up all the measured values
of the month for rainfall, and we calculate the mean of all the measured values of the month
for temperature and humidity.

https://www.dropbox.com/s/0p4uc2dihfhr9cb/Dakar.csv?dl=0
https://www.dropbox.com/s/0p4uc2dihfhr9cb/Dakar.csv?dl=0
https://www.meteoblue.com/historyplus
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Figure 1. Location of Dakar, Fatick, and Kedougou in Senegal. The choice of these three regions
is motivated by data availability (notably the presence of villages where longitudinal studies have
been conducted), but also by geographical differences: influence of the ocean in the Dakar peninsula,
tropical climate in Kedougou, and savanna landscape in Fatick. These fundamental geographical
differences allow us to test the applicability of GLMs under drastically different evolutions of the
climate variables.

2.1.1. Response Variable

In this study, the response variable (or explained variable) is the falciparum malaria
incidence count per month noted by Yo(t).

2.1.2. Independent Variables

The available explanatory variables of this study are the history of falciparum malaria
incidence count per month (Yo(t− δ)), the rainfall (R(t− δ), mm per month), the average
temperature (T(t− δ), °C per month), the relative humidity (H(t− δ), % per month), the
number of insecticide treated bed-nets distributed per month (B(t− δ)), the number of
anti-malarial drugs distributed per month (A(t− δ)) where we consider δ = h, h + 1, . . . , 6
(h represents a forecast horizon), and an artificial vector that we call intercept vector I equal
to 1 all t.

We are interested in the meteorological explanatory variables such as the rainfall (R),
the average temperature (T) and the relative humidity (H) because they are known to
influence the mosquitoes (Anopheles) ecology by affecting its distribution, seasonality, and
transmission intensity [18,19]. For example, the temperature influences the sporogonic
development duration of the parasite and many parameters related to the mosquitoes
such as: the biting rate, the egg deposition rate, and the death rate of immature and
adult mosquitoes [19]. The rainfall influences the availability and the quality of the larval
breeding grounds [20] and the maturation of immature mosquitoes [19]. As for the bed-net
(B) and the drugs (A) distributed, we took them because we suppose that they constitute
the main factors fighting against malaria [16], reducing the morbidity and the mortality
of the disease. Needless to say, the number of bed-nets actually used would be a more
suitable explanatory variable, but these data are not available. Note that, in contrast with
the physical explanatory variables (R, T, and H), the human explanatory variables (B and
A) may depend on the incidence in the past, and they may also be influenced by models
used by the health authorities. For this reason, in most of our experiments, we only consider
the physical explanatory variables.

All simulations and data analysis are carried out with Jupyter Notebook (Anaconda 3) and
Spyder (Python 3.7). Figures 2–7 (reproduce with Malaria_inci_and_variable_2022_07_23.py)
present the plots of some variables in order to illustrate their annual distribution. Figures 2–4
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show the variations of malaria cases in relation to the rainfall and Figures 5–7 show the
variations of malaria cases in relation to the bed-net.
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Figure 2. Malaria (falciparum malaria incidence count per month, black) and rainfall (mm per month,
green) in Dakar, 2008–2016.
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Figure 3. Malaria (falciparum malaria incidence count per month, black) and rainfall (mm per month,
green) in Fatick, 2008–2016.
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Figure 4. Malaria (falciparum malaria incidence count per month, black) and rainfall (mm per month,
green) in Kedougou, 2008–2016.
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Figure 5. Malaria (falciparum malaria incidence count per month, black) and Bed-net distributed
(the number of insecticide treated bed-nets distributed per month, blue) in Dakar, 2008–2016.
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Figure 6. Malaria (falciparum malaria incidence count per month, black) and Bed-net distributed
(the number of insecticide treated bed-nets distributed per month, blue) in Fatick, 2008–2016.
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Figure 7. Malaria (falciparum malaria incidence count per month, black) and Bed-net distributed
(the number of insecticide treated bed-nets distributed per month, blue) in Kedougou, 2008–2016.

Our experiments use the epidemiological data from PNLP and the meteorological data
from meteoblue from 31 January 2008 to 31 December 2016, in Dakar, Fatick and Kedougou.
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2.2. Models

We have n data points (Xt1, Xt2, ..., Xtk, Yt) ∈ Rk+1 for t = 1, ..., n where k is the number
of explanatory variables (including the intercept vector) and n is the number of months.
We want to build a generalized linear model (GLM) of the response vector Y using the k
explanatory variables X1, ..., Xk, according to the diagram Equation (1), where we denote
by R-v: Random variable, L-f: Link function and D-c: Deterministic component. According
to [3], the link function permits the mean (µ) of the t th observation and its linear predictor
(η) to be related. We let Xt1 = 1, t = 1, . . . , n making β1 the intercept. In the D-c block, the
regression coefficients β1, . . . , βk are to be estimated on the train-set.

R-v : Yt ∼ f (Yt; µt)
µt←− L-f : g(µt) = η(Xt)

η←− D-c : η(Xt) =
k

∑
j=1

β jXtj. (1)

According to the studies in [3,12,21], candidate distributions for viable modeling
include the Poisson and negative binomial (NB) distributions. Now, we are going to
present these two regression models in the following Sections 2.2.1 and 2.2.2.

2.2.1. Poisson Regression Model

The Poisson distribution is probably the most used discrete distribution because of
its simplicity, according to [11]. Its conditional probability mass function is defined as
in [2,11] by

f (Yt; µt) =
µYt

t exp(−µt)

Yt!
= exp[Yt log(µt)− µt − log(Yt!)].

According to Equation (1), we have

µt = g−1(XT
t β)

= g−1(β1Xt1 + . . . + βkXtk).
(2)

2.2.2. NB Regression Model

The Poisson–Gamma mixture distribution is the negative binomial distribution, ac-
cording to [6]. Its probability mass function is given as in [5–7] by

f (Yt; µt, α) =
Γ(Yt +

1
α )

Γ( 1
α )Γ(Yt + 1)

(
1

1 + αµt
)

1
α (

αµt
1 + αµt

)Yt , (3)

where Γ is the gamma function. Its mean is µt and its variance is µt + αµ2
t , where α is

termed the distribution parameter. Note that, if α→ 0, the negative binomial converges to
the Poisson distribution.

The Section Appendix A describes how the regression coefficients are computed.

2.3. Estimation and Forecasting Methods
2.3.1. Train and Test Sets

We have ts < ti < tc < te, where ts is the initial time of the data, ti is the initial time of
the observed malaria incidence, tc is the end time of the train set, te is the end time of the
test set.

2.3.2. Parameter Estimation and Principles of Forecasting

We train the model by taking the observed malaria incidence (Yo(t)) in [ti, tc] and the
explanatory variables (Xtj, j = 1, . . . , k) in [ti − δ, tc − δ]. We did this in order to have the
regression coefficients βs and the dispersion parameter α (only with NB regression model).

In [2], the authors suggest to calculate α using a technique that they call auxiliary
Ordinary Least Squares (OLS) regression without a constant. In the negative binomial
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case, a first estimation of the βs is obtained by the procedure of the Poisson case. Then,
α is computed by OLS method. Finally, the βs are re-estimated by maximizing the log
likelihood (Equation (A3)) wrt β.

Then, we make the forecasts, according to Algorithm 1, with the coefficients found in
the train period. We assess the model accuracy in the test period [tc + 1, te] by comparing
the theoretical (mean µt) and the observed (Yo(t)) incidences.

Algorithm 1 describes the train-test procedure. For the link function g, the choices iden-
tity, log and sqrt are available in the Python library statsmodels.genmod.families.links.
The forecasts are obtained with the formula

µt = g−1(β1X1(t) +
k

∑
j=2

β jXj(t− δ)). (4)

Algorithm 1: Forecasting Algorithm
Input: ts, ti, tc, te ← times of Section 2.3.1;

`← vector (Section 3.1);
h← forecast horizon (h ≥ 1);
Yo ← observed malaria incidence (dependant variable);
X = {X1, X2, . . . , Xk} ← set of explanatory variables;
f ← distribution (Poisson or NB);
g← link (identity, log, or sqrt);

Output: Ŷ← the forecasted vector of malaria incidence;
1 Ytrain = Yo(ti : tc);
2 Xtrain = {X1(ti : tc), X2(ti − `2 : tc − `2), . . . , Xk(ti − `k : tc − `k)};
3 Fit the GLM with distribution f and link g in the train period using the Python

library statsmodels.genmod.families;
4 Get the regression coefficients β j, j = 1, . . . , k;
5 for t ∈ [tc + 1, te] do
6 Ŷ(t) = g−1

(
β1X1(t) + ∑k

j=2 β jXj(t− `j)
)

.

2.3.3. Saturation Method

We would like to test a saturation in the explanatory variables, in particular rainfall.
The motivation is that additional rainfall should have less impact on the malaria incidence
in a wet period than in a dry period. The saturation can be simply a hyperbolic tangent
function. We posit that, instead of being linear, the contribution of rainfall to η(X) is
affected by a saturation, which we model by

Rsat = γ tanh(R/γ). (5)

We estimate the parameter γ by making a research in many initial values of γ in order
to find the more adapted value which gives the low RMSE_train after fitting the GLM. This
procedure is entirely described in Algorithm 2.
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Algorithm 2: Forecasting Algorithm with Saturation
Input: ts, ti, tc, te ← times of Section 2.3.1;

`← vector (Section 3.1);
h← forecast horizon (h ≥ 1);
Yo ← observed malaria incidence (dependant variable);
X = {X1, X2, . . . , Xk−1, R} ← set of explanatory variables;
f ← distribution (Poisson or NB);
g← link (identity, log, or sqrt) ;

Output: Ŷ← the forecasted vector of malaria incidence;
1 Ytrain = Yo(ti : tc);
2 Xtrain =
{X1(ti : tc), X2(ti − `2 : tc − `2), . . . , Xk−1(ti − `k−1 : tc − `k−1), R(ti − `R : tc − `R)};

3 for γ ∈ [γmin, γmax] do
4 Rsat = γ tanh(R(ti − `R : tc − `R)/γ) // calculate the saturated rainfall;
5 Xtrain−sat =

{X1(ti : tc), X2(ti − `2 : tc − `2), . . . , Xk−1(ti − `k−1 : tc − `k−1), Rsat};
6 Fit the Poisson distribution and link g with Ytrain and Xtrain−sat in order to

obtain the predicted mean (µ);

7 RMSE(γ) =

√
∑tc

t=ti
(Yo(t)−µt)

2

tc−ti+1 // Calculte the RMSE for every value of γ

8 γopt = arg min RMSE // Get the γopt;
9 Rsat−opt = γopt tanh(R(ti − `R : tc − `R)/γopt) // Re-calculate the saturated

rainfall with γopt;
10 Xtrain−opt ={

X1(ti : tc), X2(ti − `2 : tc − `2), . . . , Xk−1(ti − `k−1 : tc − `k−1), Rsat−opt
}

;
11 Fit the GLM with distribution f and link g with Ytrain and Xtrain−opt using the

Python library statsmodels.genmod.families;
12 Get the regression coefficients β j, j = 1, . . . , k;
13 for t ∈ [tc + 1, te] do
14 Ŷ(t) = g−1

(
β1X1(t) + ∑k−1

j=2 β jXj(t− `j) + γopt tanh(R(t− `R)/γopt)
)

.

3. Results and Discussion

In this section, we first present and discuss the results of the correlation between the
explained variable and each explanatory variable. We define metrics. Then, we present the
forecast results from the Algorithm 1. Finally, we present the results from other methods
such as addition study, ablation study, and saturation.

3.1. Determination of Lags

For Dakar data in Figure 2, we observe, every year, an increase in malaria cases in
the rainy season (from May or June to October or November), reaching a peak around the
month of October or November, and a decrease to become stationary along the dry season.
This situation is also observed in Fatick (Figure 3) and Kedougou (Figure 4), and proves
the seasonality of the malaria cases from these three regions.

The plots of the malaria cases and the explanatory variables (e.g., Figures 2–4) reveal
that there is a delay between the maximum of malaria cases and the maximum of the
explanatory variable) in the three data sets. This delay is called lag and represented by ` in
the formulae. We set

`j := arg max
δ∈{h,h+1,...,6}

∣∣∣r(Yo(ti : te), Xj(ti − δ : te − δ))
∣∣∣, (6)

where r denotes the sample Pearson correlation coefficient. The statistical results are
presented in Table 1 (reproduce with Determination_of_lag_2022_07_23.py) and the evo-
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lution of correlations as function of lags is illustrated in Figures 8–10 (reproduce with
Correlation_Plots_2022_07_23.py).

Table 1. Sample Correlations between the falciparum malaria incidence count per month and the
explanatory variables in Dakar, Fatick, and Kedougou, from 2008 to 2016. These correlations are
the maximum values in absolute value obtained at index `. The statistical significance of these
correlations is tested by calculating the p-value associated with the Pearson correlation coefficient by
using the Scipy pearsonr() function, which returns the Pearson correlation coefficient along with
the two-tailed p-value. Correlation, lag and p-values are reported.

Dakar Fatick Kedougou

Yo{t} and Rt−` 0.79 0.62 0.61
` = 2 ` = 3 ` = 1
4.48× 10−23 2.14× 10−12 9.93× 10−12

Yo{t} and Tt−` 0.65 0.43 0.56
` = 1 ` = 4 ` = 5
8.73× 10−14 5.04× 10−06 4.86× 10−10

Yo{t} and Ht−` 0.56 0.69 0.58
` = 5 ` = 3 ` = 1
7.43× 10−10 5.88× 10−16 1.50× 10−10

Yo{t} and Bt−` 0.15 0.38 0.60
` = 6 ` = 3 ` = 3
0.129 5.99× 10−05 3.16× 10−11

Yo{t} and At−` 0.85 0.88 0.92
` = 0 ` = 0 ` = 0
8.61× 10−30 5.84× 10−35 6.48× 10−43

Yo{t} and Yo{t−`} 0.72 0.75 0.80
` = 1 ` = 1 ` = 1
9.55× 10−18 1.31× 10−19 4.28× 10−24

Since these p-values are less than 0.05, we could conclude that there is a statistically
significant correlation between the malaria incidence and the explanatory variable at the
delay considered. The only exception is the bed-nets distributed in Dakar where the p-value
is 0.129 > 0.05.

The rainfall is highly and positively correlated, meaning that if the rainfall increases,
the malaria incidence will increase. These results are also found in [11], revealing that
rainfall was a strong positive predictor of increasing the annual incidence rate. The bed-net
distribution is weakly correlated in Dakar. Then, it is positively correlated in Fatick (even
if the value is low) and in Kedougou with a lag of three months. Indeed, the situation
in Fatick and Kedougou can be explained by the fact that the authorities anticipate the
bed-net distribution three months before the beginning of the rainy season. On the other
hand, in Figure 7, we observe that the bed-net distribution is not regular in Kedougou
because its behavior is very different in the last two years of the dataset. For all these
reasons, we do not use the bed-net distribution (B) as an explanatory variable. The optimal
lag between the malaria cases and the drugs (A) is equal to 0 in all the regions. This result
means that the drugs is not a real predictor because it is usually taken after appearing
some malaria symptoms from a patient. That reason leads us to do not consider the drug
as an explanatory variable. But it can help to cure some sick people and to reduce future
malaria cases. In Figures 8–10, the correlation between malaria cases at time t and the
malaria in the past (t− δ) decreases for all values of δ meaning that the malaria in the past,
as an explanatory variable, becomes less and less important when δ becomes larger. The
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explanatory variables for Y(t) are thus finally Yo(t− `Yo), R(t− `R), T(t− `T), H(t− `H),
and 1 for the intercept.

Figure 8. Correlation plots for Dakar.

Figure 9. Correlation plots for Fatick.

Figure 10. Correlation plots for Kedougou.



Int. J. Environ. Res. Public Health 2023, 20, 6303 12 of 27

3.2. Model Performance Metrics

The output of the GLM is a probability distribution at each time instant. Accuracy
measures such as the root mean square error (RMSE) and the mean absolute scaled error
(MASE) defined in [22], and the mean absolute relative error (MARE) defined in [23], quan-
tify the discrepancy between the mean µt of the distribution and the observed incidence
Yo(t). We also introduce other statistical measures such as the scatter index (SI) and the
reliability analysis (RA) defined in [24]. We conduct experiments for 108 months with a
train and a test period.

• Root mean square error (RMSE):

RMSE =

√
∑tc

t=ti
(Yo(t)−Y(t))2

tc − ti + 1
. (7)

• Mean absolute error (MAE):

MAE =
1

tc − ti + 1

tc

∑
t=ti

|Yo(t)−Y(t)|. (8)

• Mean absolute scaled error (MASE):

MASE =
MAE

1
tc−ti

∑tc−1
t=ti
|Yo(t + 1)−Yo(t)|

. (9)

It consists of the ratio between the MAE and the mean monthly variation of the
observed values. A MASE value around 1 or below indicates an excellent accuracy.

• Mean absolute relative error (MARE):

MARE =
1

tc − ti + 1

tc

∑
t=ti

|Yo(t)−Y(t)|
|Yo(t)|

. (10)

• R-squared [2]:
R2

COR = ( ˆCOR[Yo, µ])2. (11)

It is the proportion of variation in the outcome that is explained by the predictor
variables. The higher the R-squared, the better the model, in contrast to all the above
metrics.

The Scatter index (SI) (also called the normalized root mean squared error (NRMSE))
and the reliability analysis (RA) are defined in [24].

• The SI presents the percentage of RMSE difference with respect to mean observation
or it gives the percentage of expected error for the parameter. Lower values of the SI
are an indication of better model performance.

SI =

√
(1/n)∑tb

t=ta
((Yt − Ȳ)− (Yo(t)− Ȳo))2√

(1/n)∑tb
t=ta

Yo(t)
. (12)

• The reliability analysis (RA) is a statistical method for measuring the overall consis-
tency of a model by determining if this suggested model achieves a permissible level
of performance.

RA = (
100%

tb − ta + 1
)

tb

∑
t=ta

k(t), (13)
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where the ks are determined through two steps. First, the relative average error (RAE)
is defined as a vector whose tth component is

RAE(t) = |Yo(t)−Y(t)
Yo(t)

|. (14)

Next, if RAE(t) ≤ ∆, then k(t) = 1, otherwise k(t) = 0, where ∆ is a threshold value
that is 0.2 (20%) based on Chinese standards.

3.3. Model Selection and Result Comparison
3.3.1. Model Selection by Using the Vuong Test

In order to assess the adequacy of the distribution, we apply the Vuong statistical test
as in [25,26]. The Vuong test is defined as follows:

V =

√
n 1

n ∑n
t mt√

1
n ∑n

i (mt − m̄)2
, (15)

where mt = log( f1(Yt|Xt)/ f2(Yt|Xt)) in which f1(Yt|Xt) is the first probability mass func-
tion and f2(Yt|Xt) is the second probability mass function. If V > 1.96, then the first model
is preferred. If V < −1.96, then the second one is preferred. If −1.96 < V < 1.96, none
of the models are preferred. In our case, we let f1 be the Poisson distribution and f2 the
NB distribution. This statistical test permits to choose the most adequate between the two
regression models in order to fit the data.

Figures 11–13 (reproduce with Vuong_test_2022_07_23.py) present the dependence of
the Vuong test value (V) with respect to α (dispersion parameter). The figures show that
the α computed by OLS is usually in the window where the Poisson model is preferable to
the NB model. An exception is observed in Kedougou where none is preferred with log
and sqrt. We can conclude that the use of the GLM with Poisson distribution is justified.

Figure 11. V vs. α between Poisson and NB distributions. Estimating α in each region by the ordinary
least squares (OLS) method gives 0.109, 0.222 and 0.282, respectively, in Dakar, Fatick, and Kedougou.

Figure 12. V vs. α between Poisson and NB distributions. Estimating α in each region by the ordinary
least squares (OLS) method gives 0.142, 0.202 and 0.412, respectively, in Dakar, Fatick, and Kedougou.
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Figure 13. V vs. α between Poisson and NB distributions. Estimating α in each region by the ordinary
least squares (OLS) method gives 0.119, 0.214 and 0.318, respectively, in Dakar, Fatick, and Kedougou.

3.3.2. Results Comparison by Using Metrics

In this part, we made a comparative analysis in Table 2 (reproduce with Compara-
tive_results_with_all_models_2022_07_23.py) between the three models that are Gaussian
(identity, log), Poisson (identity, log, sqrt), and negative binomial (identity, log, sqrt). Ex-
periments are carried out with Algorithm 1 without saturation. We include the minimum
values of the predicted mean obtained after fitting the model. A negative sign indicates
that the model is not adequate for our count data. All these metric values permit us to
validate and to compare the performance of the models.

Table 2. Results of accuracy measures with Algorithm 1 and the explanatory variables Yo(t− h),
R(t− `R), T(t− `T), H(t− `H), and 1 for the intercept. We have considered ts = 0, ti = 5, tc = 84
and te = 108 and h = 1. Refer to Table 1 for `R, `T and `H values. Train/test values are reported and
mint∈{ti,...,tc} µ(t). We denote by G: Gaussian, P: Poisson, id: identity, Dk: Dakar, Ft: Fatick, and Kd:
Kedougou.

Model Link RMSE MASE MARE R2
COR min RA

Dk G id 2197.29/2384.26 0.52/1.01 0.68/1.54 0.84/0.79 −517.03 28.75/20
log 2466.29/2352.81 0.6/1.38 0.85/2.66 0.79/0.78 511.81 22.5/4

P id 2245.27/2689.74 0.52/1.02 0.54/1.28 0.83/0.78 282.6 32.5/16
log 2523.01/2297.45 0.57/1.23 0.65/2.05 0.79/0.77 341.22 27.5/4
sqrt 2354.97/2303.14 0.54/1.08 0.62/1.77 0.81/0.8 279.49 30/12

NB id 2558.87/3555.94 0.58/1.28 0.5/1.24 0.82/0.76 460.63 27.5/16
log 3736.91/2424.02 0.74/1.1 0.61/1.89 0.73/0.79 471.42 28.75/8
sqrt 3409.99/3234.53 0.73/1.23 0.55/1.56 0.79/0.79 482.42 28.75/16

Ft G id 768.52/578.88 0.83/1.33 0.66/0.59 0.67/0.75 87.78 27.5/24
log 721.66/484.07 0.81/1.31 0.73/0.7 0.71/0.83 83.29 25/16

P id 772.32/543.56 0.82/1.26 0.65/0.6 0.67/0.72 99.12 31.25/24
log 741.92/491.42 0.83/1.37 0.85/0.88 0.69/0.78 215.44 25/8
sqrt 763.78/526.94 0.84/1.32 0.79/0.74 0.68/0.73 215.13 26.25/20

NB id 839.53/527.32 0.87/1.22 0.61/0.59 0.64/0.67 69.22 30/20
log 861.98/466.03 0.91/1.21 0.84/0.79 0.63/0.7 268.19 21.25/20
sqrt 942.27/504.91 0.98/1.13 0.75/0.59 0.62/0.64 180.39 22.25/28

Kd G id 1230.61/2467.27 1.01/0.92 1.19/0.63 0.62/0.62 29.85 10/16
log 1409.28/2720.94 1.27/1.01 2.18/0.73 0.51/0.56 872.92 13.75/20

P id 1241.89/2431.91 0.99/0.87 0.9/0.47 0.61/0.63 126.76 16.25/24
log 1488.67/3009.49 1.15/1.1 1.47/0.52 0.46/0.59 510.81 21.25/16
sqrt 1352.9/2523.28 1.03/0.89 1.07/0.42 0.56/0.62 324.21 18.75/12

NB id 1287.33/2346.07 1.07/0.83 0.9/0.44 0.61/0.65 −52.81 16.25/28
log 2160.53/7024.86 1.42/2.47 1.08/0.73 0.4/0.58 275.72 16.25/8
sqrt 1567.23/3037.79 1.19/1.14 0.91/0.44 0.54/0.63 132.16 20/16
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Results in Table 2 show that the most of the MASEs and MAREs in the train and test
windows are around 1 in the three regions. Then, we also have the R2

CORs indicator whose
values are high (>50 %) indicating a good contribution of the explanatory variables in
the forecasts. Additionally, predictions provided by Poisson (identity) are globally more
reliable in in the three regions when compared to other models based on RA values.

We can conclude that the Poisson (identity) model can be nicely used to fit our data for
parameter estimation and to make the forecasts with these found parameters in the three
regions. All the additional studies will base on this model.

3.4. Forecasts Results by Various Sets of Explanatory Variables

Using Algorithm 1 with Poisson for f , identity for g, ts = 0, ti = 5, tc = 84, te = 108,
and h = 1, we validate the model with datasets from Dakar, Fatick, and Kedougou.

3.4.1. Forecasts Results Using History of Malaria Incidence Only

For transmissible diseases, the incidence at a given time t− δ is very important to
predict the expected incidence at a given time t. That reason leads us to first consider a set
of explanatory variables composed of two variables that are the history of malaria incidence
(Yo(t− δ)) and the intercept vector (I(t)). We defined this set as follows:

start_set← {Yo(t− δ), I(t)}. (16)

Thus, our linear predictor becomes like a simple Markov model with the Gaussian
distribution that is called first order autoregressive AR(1) [3] and defined by

µt|t−δ = g−1(β1 I(t) + β2Yo(t− δ)). (17)

The estimates returned by the model in Figures 14–16 are very accurate because of the
low standard errors and the tight 95% confidence interval and statistically significant due
to the p-values that are less than 0.05. That is why we decide not to show the confidence
intervals of the predictions as they do not clearly appear. In Figures 14–16, (reproduce with
Addition_study_2022_07_23.py) we present the forecast results (noted by A) and the curves
of β jXj (noted by B). These results are obtained from Equation (17) with Poisson (identity)
model when we take h = 1. The figures noted by B permit to show which variable is highly
(β jXj(t) � 0) or weakly (β jXj(t) ∼ 0) used during the forecasting process. In all three
regions, we observe that the sole use of the history of malaria incidence at time t− 1 gives
good results. That can be explained by the fact that it is highly used based on figures (B)
compared to the intercept whose values are close to 0. This situation is biologically true
because with the transmissible diseases like malaria the history of cases is very important
to estimate the future cases.

In addition, in Table 3, (reproduce with Various_forecasting_horizon_2022_07_23.py)
we remark that the model gives less accurate predictions when the values of h increases
corresponding a weak use of the history of malaria incidence (Yo(t− h), h > 1). We also
have collected, in Table 3, the result of SI in the training and testing periods with various
value of h. These values of SI reveal that the model is the most accurate when h = 1 because
they are the lowest in all the three regions.

The conclusion of these results is that malaria in the past was a very good explanatory
variable when h = 1.
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Figure 14. Statistical (in top) and forecasting (in bottom) results in Dakar. Malaria incidence means
the falciparum malaria incidence count per month. The train/test accuracy measures are RMSE:
3886.43 /2367.55, MASE: 0.95/1.06, MARE: 0.85/1.59, and R2

COR: 0.51/0.54. We present the forecast
results (noted by A) and the curves of β jXj (noted by B).

Figure 15. Cont.
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Figure 15. Statistical (in top) and forecasting (in bottom) results in Fatick. Malaria incidence means
the falciparum malaria incidence count per month. The train/test accuracy measures are RMSE:
916.35/408.29, MASE: 0.96/1.11, MARE: 0.76/0.75, and R2

COR: 0.55/0.5. We present the forecast
results (noted by A) and the curves of β jXj (noted by B).

Figure 16. Statistical (in top) and forecasting (in bottom) results in Kedougou. Malaria incidence
means the falciparum malaria incidence count per month. The train/test accuracy measures are
RMSE: 1250.53/2523.74, MASE: 1.02/0.93, MARE: 1.06/0.61, and R2

COR: 0.61/0.59. We present the
forecast results (noted by A) and the curves of β jXj (noted by B).



Int. J. Environ. Res. Public Health 2023, 20, 6303 18 of 27

Table 3. Accuracy measures in the three regions: Algorithm 1 with Poisson for f and identity for g
where the set of explanatory variables is Equartion (16) and h = 1, 2, 3. Train/test values are reported.

Regions h RMSE MASE MARE R2
COR SI

Dakar 1 3886.43/2367.55 0.95/1.06 0.85/1.59 0.51/0.54 33.93/49.35
Dakar 2 5265.41/3565.7 1.47/2.15 2.4/5.97 0.08/0.06 41.5/69.91
Dakar 3 5399.89/4075.83 1.55/2.79 3.15/9.38 0.01/0.01 60.31/56.57
Fatick 1 916.35/408.29 0.96/1.11 0.76/0.75 0.55/0.5 22.22/18.83
Fatick 2 1250.88/741.17 1.47/2.26 1.99/2.21 0.14/0.03 24.92/24.75
Fatick 3 1339.06/807.71 1.67/2.71 2.85/3.32 0.0/0.01 25.23/25.19

Kedougou 1 1250.53/2523.74 1.02/0.93 1.06/0.61 0.61/0.59 30.69/36.47
Kedougou 2 1790.88/3770.72 1.58/1.59 2.67/1.23 0.19/0.18 41.54/41.69
Kedougou 3 1972.37/4427.78 1.87/1.84 3.65/1.43 0.02/0.01 42.41/47.11

3.4.2. Forecasts Results by Using all Explanatory Variables

In this part, we use the whole explanatory variables and the results from Algorithm 1
and Equation (4) are presented in Figures 17–19 (reproduce with Saturated_and_non_
saturated_rainfall_2022_07_23.py). The confidence intervals of the predictions are not
shown based on the same observations made in the previous Section 3.4.1.

Figure 17B of Dakar data shows with some peaks in the rainfall distribution. While,
in Figure 18B about Fatick data, the rainfall variable is weakly used and this variable is
negatively used in Figure 19 of Kedougou data. The peaks observed in Dakar and the
situation in Kedougou leads us to develop the method of saturation in Section 2.3.3. Then,
in Figure 17B of Dakar data, it is also shown that the humidity is weakly used to mean
that this variable has a little contribution in the forecasts. Contrary to Figure 18B about
Fatick data, the humidity is highly used, so it has a big participation in the forecasts. As for
Kedougou, in Figure 19B, this variable (humidity) is moderately used. As for temperature,
its contribution changes depending on the region. For example, in Dakar and Fatick, this
variable is negatively used as shown in Figures 17 and 18. However, in Kedougou, it is
positive and highly used in Figure 19.

We can summarize here that each explanatory variable does is not used the same in
the three regions. Thus, these analyses and observations lead to the development of the
methods in Sections 3.5 and 3.6.

Figure 17. Forecasting results in Dakar, no saturation applied. Malaria incidence means the falci-
parum malaria incidence count per month. We present the forecast results (noted by A) and the
curves of β jXj (noted by B).
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Figure 18. Forecasting results in Fatick: no saturation applied. Malaria incidence means the falci-
parum malaria incidence count per month. We present the forecast results (noted by A) and the
curves of β jXj (noted by B).

Figure 19. Forecasting results in Kedougou: no saturation applied. Malaria incidence means the
falciparum malaria incidence count per month. We present the forecast results (noted by A) and the
curves of β jXj (noted by B).

3.5. Addition Study

In this section, we experiment with different combinations of sets from Equation (16)
and we define them as follows

{start_set∪ Xj, j = 3, . . . , k}.

The purpose is to investigate the influence of each additional variable compared to
the observation in Section 3.4.1.

The Table 4 (reproduce with Addition_study_2022_07_23.py) reveals that, in Ke-
dougou, forecast results are improved by adding to start_set explanatory variables such as
temperature or humidity. In contrast, the addition of the rainfall (R) gives some less good
results in the sense of the RMSE, MASE and MARE, in Dakar and Fatick, even if the higher
values of R2

COR are observed there.

3.6. Ablation Study

We now present ablation studies where we start with all the available explanatory
variables and investigate the effect of removing any one of them. The sets of explanatory
variables after ablation are thus
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{X1, X2, . . . , Xk} \ Xj, j = 2, . . . , k.

Table 4. Results of the addition study in the three regions: Algorithm 1 with Poisson for f and
identity for g, ts = 0, ti = 5, tc = 84, te = 108 and h = 1. We denote by w: situation in the test period
with the added variable and wo: situation in the test period without the indicated variable. Ratios of
w/wo are reported. Note that, for the metrics such as RMSE, MASE and MARE, a ratio lower than
1 implies an improvement of the model when the variable is added as an explanatory variable. A
ratio of R2

COR higher than 1 indicates that adding the variable improves the forecasts.

Regions Variable RMSE w/wo MASE w/wo MARE w/wo R2
COR w/wo

Dakar Rainfall 1.18 1.02 0.99 1.43
Temperature 0.99 1.05 1.15 1.04

Humidity 0.94 1.04 1.06 1.11

Fatick Rainfall 1.24 1.22 1.04 1.34
Temperature 1 1.06 1.08 1.1

Humidity 1.18 1.05 0.77 1.34

Kedougou Rainfall 0.99 0.97 0.92 1.02
Temperature 0.96 0.95 0.88 1.05

Humidity 0.98 0.93 0.7 1.03

By doing that, we can know which variable is more responsible of the over-forecasting
(or under-forecasting) observed.

The results in Table 5 (reproduce with Ablation_study_2022_07_23.py) show a low
accuracy in terms of RMSE, MASE, and MARE in the whole three regions data sets when
the malaria incidence in the past was deleted. This situation was expected when we refer
to the forecast results in Section 3.4.1. It is also shown there that the deletion of one of the
others variables such as rainfall, temperature and humidity generally reduces a bit the
performance of the models in the sense of RMSE, MASE, and MARE.

Table 5. Results of the ablation study in the three regions: Algorithm 1 with Poisson for f and identity
for g, ts = 0, ti = 5, tc = 84, te = 108 and h = 1. We denote by wo: situation in the test period
without the indicated variable and w: situation in the test period with all the explanatory variables.
Ratios of wo/w are reported. Note that, for the metrics such as RMSE, MASE and MARE, a ratio
lower than 1 implies that the result is good without the indicated variable. A ratio of R2

COR higher
than 1 indicates adding the variable improves the forecasts. We denote by Mcp: Malaria cases in
the past.

Variable RMSE wo/w MASE wo/w MARE wo/w R2
COR wo/w

Dakar Mcp 1.5 1.74 2.04 0.82
Rainfall 0.83 1.06 1.27 0.75

Temperature 1.05 1.07 1.11 0.98
Humidity 1.04 1.05 1.25 0.98

Fatick Mcp 1.48 1.63 1.58 1.11
Rainfall 0.94 0.95 1.06 0.93

Temperature 0.96 0.98 0.96 1.01
Humidity 0.92 1.05 1.3 0.98

Kedougou Mcp 1.5 1.64 1.25 1.21
Rainfall 1 0.99 0.92 1.01

Temperature 1.02 1.02 0.92 0.97
Humidity 1.01 1.03 1.14 0.98

3.7. Forecasts Results Using Saturation

In this section, we made a main modification to the rainfall variable. We call this
method by saturation and the procedure is entirely detailed in Section 2.3.3 and the al-
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gorithm therein (Algorithm 2). Statistical results of this method are presented in Table 6.
They permit us to distinguish the performance given by this novelty compared to Table 2.
The confidence interval of the predictions in Figures 20 and 21 (reproduce with Satu-
rated_and_non_saturated_rainfall_2022_07_23.py) are not shown based on the same obser-
vations made in the previous Section 3.4.1.

Figure 20. Forecasting results of the saturation in Dakar. Malaria incidence means the falciparum
malaria incidence count per month. We present the forecast results (noted by A) and the curves of
β jXj (noted by B).

Figure 21. Forecasting results of the saturation in Kedougou. Malaria incidence means the falciparum
malaria incidence count per month. We present the forecast results (noted by A) and the curves of
β jXj (noted by B).

As a result, an improvement of the forecasts is observed based on Table 6. For Dakar,
we observed an improvement of the results after applying the saturation according to all
the metrics. It is interesting to see that, in Dakar, the introduction of the saturated rainfall
has reduced the over-estimation occurring at the end of 2015; compare Figures 17 and 20.
Then, in Fatick, all the values are 1, meaning that the saturation method does not improve
the results. That can be explained by the fact that the rainfall is less used in this region,
according to Figure 18B. As for Kedougou, we have a ratio of MARE smaller than its value
before applying the method (0.87) and a ratio of R2

COR higher than the value before applying
the method (1.04). There is no improvement in terms of ration of the RMSE and MASE.
That may be explained by the fact that there was not a peak as that is illustrated in Figure 19
or the forecasts have been already good. Another favorable effect of the saturation is that,
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in Kedougou, the non-saturated rainfall is negatively used (Figure 19B) while the saturated
rainfall is positively used (Figure 21B).

Table 6. Comparison results after and before the saturation: Algorithm 2 with Poisson for f and
identity for g, ts = 0, ti = 5, tc = 84, te = 108 and h = 1. We denote by w: the metric with saturation
and wo: the metric without saturation, in the test period. Ratios of w/wo are reported. Note that, for
the metrics such as RMSE, MASE, and MARE, a ratio lower than 1 implies an improvement of the
model to make good forecasts with saturation. A ratio of R2

COR higher than 1 indicates that applying
the saturation improves the forecasts.

RMSE w/wo MASE w/wo MARE w/wo R2
COR w/wo

Dakar 0.95 0.97 0.96 1.01

Fatick 1 1 1 1

Kedougou 1.01 1.02 0.87 1.04

4. Conclusions

For three endemic regions of Senegal, we have investigated the accuracy, in the sense
of the metrics such as RMSE, MASE and MARE, of the falciparum malaria incidence count
per month forecasts obtained with GLM’s by using meteorological data and history of
falciparum malaria incidence count per month as explanatory variables. Using the Vuong
test, we have compared the adequacy of Poisson-based and NB-based GLM’s. And the
Poisson with identity as a GLM link function is in practice the more adequate regression
model to make forecasts of malaria incidence based on meteorological factors. We have
observed that the choice of the GLM’s link function and the use of adequate lags in the
explanatory variables may have a considerable impact on the forecast accuracy. We also
have observed that the application of saturation in the rainfall increases the quality of the
forecasts in Dakar and Kedougou.

Ablation study shows that removing the history of malaria cases from the explanatory
variables has a strong adverse effect on the forecast accuracy.

This study is led with a monthly malaria incidence count due to the unavailability
of the daily malaria incidence reports that could have helped us to understand better the
influence of the climatic data. This study is a step towards providing the authorities with
decision-making tools for the optimal dispatch of resources.

This proposed GLM gives some overestimations in the forecasts (end of 2016 in Dakar
in Figure 17 and Fatick in Figure 18). These peaks can be caused by an inadequacy of this
model due to its linear character even if a non-linearity is then applied for rainfall. This may
also be due to a variable ratio of infected people being sufficiently ill to go to the hospital and
be confirmed, thus causing a bias in the collected data. Another and important explanation
to the over-forecasting (or under-forecasting) observed can be the unavailability of some
explanatory variables: the distance to water bodies, the normalized differenced vegetation
index (NDVI), the night and day LST (land surface temperature), the ownership and use
of insecticide treated nets (ITNs) and the intermittent preventive treatment distributed
for pregnant women (IPTp) that are considered to fit malaria incidence [13]. Providing
the enhanced vegetation index (EVI), and actual evapotranspiration (ETa) could help to
improve the malaria incidence fitting model [27]. In our available data, there was the ITNs
distributed because it constitutes the main factor fighting against malaria according to [16]
but its distribution was not very regular (see Figures 5–7). Needless to say, the ownership
and use of ITNs would be a more suitable explanatory variable.
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Appendix A. Method for Parameter Estimation

Appendix A.1. Poisson Log-Likelihood

1. The likelihood function is defined as follows

`(β) =
n

∏
t=1

f (Yt|Xt; β)

=
n

∏
t=1

exp[Yt log(µt)− µt − log(Yt!)],

where the right-hand side depends on β through Equation (2).
2. The Log-likelihood is defined as follows

log `(β) = log
n

∏
t=1

exp[Yt log(µt)− µt − log(Yt!)].

log `(β, Y, X) =
n

∑
t=1
{Yt log(µt)− µt − log(Yt!)} (A1)

where µt depends on X and β and is defined as follows Equation (2). Observe that the
term log(Yt!) does not depend on the parameters to be estimated.

3. The first derivative of the log-likelihood is named the gradient. If g = log, we have
log(µt) = ηt = XT

t β. So this function is defined as follows

log `(β) =
n

∑
t=1
{Yt log(µt)− µt − log(Yt!)}

=
n

∑
t=1
{Ytηt − eηt − log(Yt!)}.

Then, the gradient at state j is defined by

S(β j) =
∂ log `(β j)

∂β j

=
n

∑
t=1

∂
{

Ytηtj − eηtj − log(Yt!)
}

∂ηtj

∂ηtj

∂β j

=
n

∑
t=1
{Yt − µt}Xtj

https://www.dropbox.com/s/7vdxopgeshlxhrc/Python%20codes%20of%20malaria%20model.zip?dl=0
https://www.dropbox.com/s/7vdxopgeshlxhrc/Python%20codes%20of%20malaria%20model.zip?dl=0
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Then, if g=identity, we have µt = ηt = XT
t β. So

log `(β) =
n

∑
t=1
{Yt log(ηt)− ηt − log(Yt!)}.

Then, the gradient at state j is defined by

S(β j) =
n

∑
t=1

∂
{

Yt log(ηtj)− ηtj − log(Yt!)
}

∂ηtj

∂ηtj

∂β j

=
n

∑
t=1
{Yt − µt

µt
}Xtj.

Finally, if g =
√, we have

√
µt = ηt = XT

t β. So

log `(β) =
n

∑
t=1

{
Yt log(η2

t )− η2
t − log(Yt!)

}
.

Then, the gradient at state j is defined as follows

S(β j) =
n

∑
t=1

∂
{

2Yt log(ηtj)− η2
tj − log(Yt!)

}
∂ηtj

∂ηtj

∂β j

= 2
n

∑
t=1
{Yt − µt√

µt
}Xtj.

4. The second derivative of the log-likelihood function named the Hessian is defined, if
g = log, by

H(β) =
∂S(β)

∂β

=
XT{Y− µ}

∂β

= −XT


∂µ1
∂η1

0 . . . 0

0 ∂µ2
∂η2

. . . 0
...

...
...

...
0 0 . . . ∂µn

∂ηn


∂

∂fi

H(β) = −XTWX

where W = ∂µ
∂η is the diagonal matrix with [ ∂µt

∂ηt
]tt = [µt]tt = [exp(ηt)]tt and called the

iterative weights.
Then, if g=identity so
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H(β j) =
∂S(β j)

∂β j

=

∂

[
n
∑

t=1
{ Yt

ηtj
− 1}Xtj

]
∂β j

=

∂

[
n
∑

t=1
{ Yt

ηtj
− 1}Xtj

]
∂ηtj

∂ηtj

∂β j

= −
n

∑
t=1
{ Yt

η2
tj

Xtj}Xtj

= − 1
β2

j

n

∑
t=1

Yt.

Finally, if g =
√ so

H(β j) =
∂S(β j)

∂β j

= 2
∂

[
n
∑

t=1
{ Yt

ηtj
− ηtj}Xtj

]
∂β j

= 2
∂

[
n
∑

t=1
{ Yt

ηtj
− ηtj}Xtj

]
∂ηtj

∂ηtj

∂β j

= −2
n

∑
t=1
{Yt

µt
+ 1}X2

tj.

Appendix A.2. NB Log-Likelihood

As in [11,26,28], we obtain the likelihood function

`(Yt, µt, α) =
n

∏
t=1

f (Yt; µt, α)

=
n

∏
t=1

[
Γ(Yt +

1
α )

Γ( 1
α )Γ(Yt + 1)

(
1

1 + αµt
)

1
α (

αµt

1 + αµt
)Yt ].

Then,

log `(Yt, µt, α) =
n

∑
t=1

[Yt log(
αµt

1 + αµt
)− 1

α
log(1 + αµt) + log Γ(Yt +

1
α
)− log Γ(Yt + 1)− log Γ(

1
α
)]. (A2)

Abusing notation, we omit the term log(Γ(yi + 1)) since it does not depend on the
parameters to be estimated. This yields

log ` =
n

∑
t=1

[Yt log(
αµt

1 + αµt
)− 1

α
log(1 + αµt) + log(Γ(Yt +

1
α
)− log(Γ(

1
α
))].

According to [2] p. 81 and [28], and if Yt is an integer, we have

L(Yt) :=
Yt

∑
j=0

log(j +
1
α
) = log(Γ(Yt +

1
α
)− log(Γ(

1
α
)).
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We mention it in order to avoid using the gamma function that gives infinity when Yt
is high. Finally, the formula Equation (A2) yields

log `(α, β; Y, X) =
n

∑
t=1

[Yt log(
αµt

1 + αµt
)− 1

α
log(1 + αµt) + L(Yt)]. (A3)

where µt depends on X and β according to Equation (2).

Appendix A.3. Optimization Algorithm

The βs are obtained with the iterative re-weighted least squares algorithm (IRLS)
(Newton-Raphson method) in Algorithm A1 (details are in [3]) p. 202 by solving the
following problem

β̂i+1 = β̂i + (H−1)iS(β̂i).

Algorithm A1: Newton-Raphson [29]

1 Choose initial parameter estimate βi = β0;
2 Calculate score S(β) |β=βi ;
3 Calculate derivative of the function for which you want to calculate the roots;
4 Walk along first derivative until line (plane) of the derivative crosses zero;
5 Update the betas βi+1;
6 Iterate from step 2 to 5 until convergence.
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